-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
136 lines (108 loc) · 5.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
import os
import pickle
from tqdm import tqdm
import pdb
import numpy as np
import torch
from utils.data_generator import Data
from utils.helper import default_device, set_seed, argmax_top_k, ndcg_func
from utils.sampler import WarpSampler
from LGCFModel import LGCFModel
from utils.pre_utils import set_up_optimizer_scheduler
from manifolds import StiefelManifold
from eval_metrics import recall_at_k
def train(model, data, args):
# pass
optimizer, lr_scheduler, stiefel_optimizer, stiefel_lr_scheduler = set_up_optimizer_scheduler(False, args, model, args.lr, args.lr_stie)
num_pairs = data.adj_train.count_nonzero() // 2
num_batches = int(num_pairs / args.batch_size) + 1
# print(num_batches)
for epoch in tqdm(range(args.epoch)):
avg_loss = 0.
for batch in tqdm(range(num_batches)):
triples = sampler.next_batch()
model.train()
optimizer.zero_grad()
stiefel_optimizer.zero_grad()
embeddings = model.encode(data.adj_train_norm.to(args.device))
train_loss = model.compute_loss(embeddings, triples)
train_loss.backward()
optimizer.step()
stiefel_optimizer.step()
avg_loss += train_loss.detach().cpu().item() / num_batches
print(f'Epoch: {epoch+1:04d} loss: {avg_loss:.2f}')
if (epoch + 1) % args.eval_freq == 0:
model.eval()
with torch.no_grad():
embeddings = model.encode(data.adj_train_norm.to(args.device))
pred_matrix = model.predict(embeddings, data)
results = eval_rec(pred_matrix, data)
print(f'Recall@10, @20: {results[0][0]}, {results[0][1]}')
print(f'NDCG@10, @20: {results[1][0]}, {results[1][1]}')
def eval_rec(pred_matrix, data):
topk = 50
pred_matrix[data.user_item_csr.nonzero()] = np.NINF
ind = np.argpartition(pred_matrix, -topk)
ind = ind[:, -topk:]
arr_ind = pred_matrix[np.arange(len(pred_matrix))[:, None], ind]
arr_ind_argsort = np.argsort(arr_ind)[np.arange(len(pred_matrix)), ::-1]
pred_list = ind[np.arange(len(pred_matrix))[:, None], arr_ind_argsort]
recall = []
for k in [10, 20]:
recall.append(recall_at_k(data.test_dict, pred_list, k))
all_ndcg = ndcg_func([*data.test_dict.values()], pred_list)
ndcg = [all_ndcg[x-1] for x in [10, 20]]
return recall, ndcg
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='Amazon-CD', type=str)
parser.add_argument('--c', default=1, type=float)
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--batch_size', type=int, default=10000)
parser.add_argument('--num_neg', type=int, default=1)
parser.add_argument('--num_layers', type=int, default=4)
parser.add_argument('--embedding_dim', type=int, default=50)
parser.add_argument('--tie_weight', action='store_true', default=True)
parser.add_argument('--margin', type=float, default=0.1)
parser.add_argument('--scale', type=float, default=0.1, help='scale for init embedding in Euclidean space')
# optimization
parser.add_argument('--weight_decay', type=float, default=0.005)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--lr_stie', type=float, default=0.01)
parser.add_argument('--epoch', type=int, default=500)
parser.add_argument('--optimizer', default='Adam')
parser.add_argument('--stiefel_optimizer', default='rsgd')
# parser.add_argument('--weight_manifold', default="StiefelManifold")
parser.add_argument('--lr_scheduler', default='step')
parser.add_argument('--eval_freq', type=int, default=10)
parser.add_argument('--step_lr_gamma', default=0.1, help='gamma for StepLR scheduler')
parser.add_argument('--step_lr_reduce_freq', default=500, help='step size for StepLR scheduler')
parser.add_argument('--r', default = 2., help='fermi-dirac decoder parameter for lp')
parser.add_argument('--t', default= 1., help='fermi-dirac decoder parameter for lp')
args = parser.parse_args()
print(args)
args.device = torch.device('cuda')
set_seed(args.seed)
args.weight_manifold = StiefelManifold(args, 1)
# ==== Load data ===
processed_path = os.path.join('data', args.dataset, 'processed.pkl')
if os.path.exists(processed_path):
with open(processed_path, 'rb') as f:
print(f'Loading data from {processed_path}')
data = pickle.load(f)
else:
data = Data(args.dataset, norm_adj=True, seed=args.seed, test_ratio=0.2)
with open(processed_path, 'wb') as f:
print(f'Dumping data to {processed_path}')
pickle.dump(data, f)
total_edges = data.adj_train.count_nonzero()
args.n_nodes = data.num_users + data.num_items
# args.feat_dim = args.embedding_dim
sampler = WarpSampler((data.num_users, data.num_items),
data.adj_train, args.batch_size, args.num_neg, n_workers=1)
args.stie_vars = []
args.eucl_vars = []
model = LGCFModel((data.num_users, data.num_items), args).cuda()
train(model, data, args)
print('Finished')