-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrainLargeOTflow.py
347 lines (275 loc) · 12.6 KB
/
trainLargeOTflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# trainLargeOTflow.py
# train OT-Flow for the large density estimation data sets
import argparse
import os
import time
import datetime
import torch.optim as optim
import numpy as np
import math
import lib.toy_data as toy_data
import lib.utils as utils
from lib.utils import count_parameters
from src.plotter import plot4
from src.OTFlowProblem import *
from src.Phi import *
import config
import datasets
cf = config.getconfig()
if cf.gpu:
def_viz_freq = 200
def_batch = 2000
def_niter = 8000
def_m = 256
def_val_freq = 0
else: # if no gpu on platform, assume debugging on a local cpu
def_viz_freq = 20
def_val_freq = 20
def_batch = 200
def_niter = 2000
def_m = 16
parser = argparse.ArgumentParser('OT-Flow')
parser.add_argument(
'--data', choices=['power', 'gas', 'hepmass', 'miniboone', 'bsds300','mnist'], type=str, default='miniboone'
)
parser.add_argument("--nt" , type=int, default=6, help="number of time steps")
parser.add_argument("--nt_val", type=int, default=10, help="number of time steps for validation")
parser.add_argument('--alph' , type=str, default='1.0,100.0,15.0')
parser.add_argument('--m' , type=int, default=def_m)
parser.add_argument('--nTh' , type=int, default=2)
parser.add_argument('--lr' , type=float, default=0.01)
parser.add_argument("--drop_freq", type=int , default=0, help="how often to decrease learning rate; 0 lets the mdoel choose")
parser.add_argument("--lr_drop" , type=float, default=10.0, help="how much to decrease learning rate (divide by)")
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--prec' , type=str, default='single', choices=['single','double'], help="single or double precision")
parser.add_argument('--niters' , type=int, default=def_niter)
parser.add_argument('--batch_size', type=int, default=def_batch)
parser.add_argument('--test_batch_size', type=int, default=def_batch)
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--early_stopping', type=int, default=20)
parser.add_argument('--save', type=str, default='experiments/cnf/large')
parser.add_argument('--viz_freq', type=int, default=def_viz_freq)
parser.add_argument('--val_freq', type=int, default=def_val_freq) # validation frequency needs to be less than viz_freq or equal to viz_freq
parser.add_argument('--log_freq', type=int, default=10)
parser.add_argument('--gpu', type=int, default=0)
args = parser.parse_args()
args.alph = [float(item) for item in args.alph.split(',')]
# add timestamp to save path
start_time = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
# logger
utils.makedirs(args.save)
logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__))
logger.info("start time: " + start_time)
logger.info(args)
test_batch_size = args.test_batch_size if args.test_batch_size else args.batch_size
device = torch.device("cuda:" + str(args.gpu) if torch.cuda.is_available() else "cpu")
if args.prec =='double':
prec = torch.float64
else:
prec = torch.float32
def batch_iter(X, batch_size=args.batch_size, shuffle=False):
"""
X: feature tensor (shape: num_instances x num_features)
"""
if shuffle:
idxs = torch.randperm(X.shape[0])
else:
idxs = torch.arange(X.shape[0])
if X.is_cuda:
idxs = idxs.cuda()
for batch_idxs in idxs.split(batch_size):
yield X[batch_idxs]
# decrease the learning rate based on validation
ndecs = 0
n_vals_wo_improve=0
def update_lr(optimizer, n_vals_without_improvement):
global ndecs
if ndecs == 0 and n_vals_without_improvement > args.early_stopping:
for param_group in optimizer.param_groups:
param_group["lr"] = args.lr / args.lr_drop
ndecs = 1
elif ndecs == 1 and n_vals_without_improvement > args.early_stopping:
for param_group in optimizer.param_groups:
param_group["lr"] = args.lr / args.lr_drop**2
ndecs = 2
else:
ndecs += 1
for param_group in optimizer.param_groups:
param_group["lr"] = args.lr / args.lr_drop**ndecs
def load_data(name):
if name == 'bsds300':
return datasets.BSDS300()
elif name == 'power':
return datasets.POWER()
elif name == 'gas':
return datasets.GAS()
elif name == 'hepmass':
return datasets.HEPMASS()
elif name == 'miniboone':
return datasets.MINIBOONE()
else:
raise ValueError('Unknown dataset')
def compute_loss(net, x, nt):
Jc , cs = OTFlowProblem(x, net, [0,1], nt=nt, stepper="rk4", alph=net.alph)
return Jc, cs
if __name__ == '__main__':
cvt = lambda x: x.type(prec).to(device, non_blocking=True)
data = load_data(args.data)
data.trn.x = torch.from_numpy(data.trn.x)
print(data.trn.x.shape)
data.val.x = torch.from_numpy(data.val.x)
# hyperparameters of model
d = data.trn.x.shape[1]
nt = args.nt
nt_val = args.nt_val
nTh = args.nTh
m = args.m
# set up neural network to model potential function Phi
net = Phi(nTh=nTh, m=m, d=d, alph=args.alph)
net = net.to(prec).to(device)
# resume training on a model that's already had some training
if args.resume is not None:
# reload model
checkpt = torch.load(args.resume, map_location=lambda storage, loc: storage)
m = checkpt['args'].m
alph = args.alph # overwrite saved alpha
nTh = checkpt['args'].nTh
args.hutch = checkpt['args'].hutch
net = Phi(nTh=nTh, m=m, d=d, alph=alph) # the phi aka the value function
prec = checkpt['state_dict']['A'].dtype
net = net.to(prec)
net.load_state_dict(checkpt["state_dict"])
net = net.to(device)
if args.val_freq == 0:
# if val_freq set to 0, then validate after every epoch
args.val_freq = math.ceil(data.trn.x.shape[0]/args.batch_size)
# ADAM optimizer
optim = torch.optim.Adam(net.parameters(), lr=args.lr, weight_decay=args.weight_decay)
logger.info(net)
logger.info("-------------------------")
logger.info("DIMENSION={:} m={:} nTh={:} alpha={:}".format(d,m,nTh,net.alph))
logger.info("nt={:} nt_val={:}".format(nt,nt_val))
logger.info("Number of trainable parameters: {}".format(count_parameters(net)))
logger.info("-------------------------")
logger.info(str(optim)) # optimizer info
logger.info("data={:} batch_size={:} gpu={:}".format(args.data, args.batch_size, args.gpu))
logger.info("maxIters={:} val_freq={:} viz_freq={:}".format(args.niters, args.val_freq, args.viz_freq))
logger.info("saveLocation = {:}".format(args.save))
logger.info("-------------------------\n")
begin = time.time()
end = begin
best_loss = float('inf')
best_cs = [0.0]*3
bestParams = None
log_msg = (
'{:5s} {:6s} {:7s} {:9s} {:9s} {:9s} {:9s} {:9s} {:9s} {:9s} {:9s} '.format(
'iter', ' time','lr','loss', 'L (L2)', 'C (loss)', 'R (HJB)', 'valLoss', 'valL', 'valC', 'valR',
)
)
logger.info(log_msg)
timeMeter = utils.AverageMeter()
# box constraints / acceptable range for parameter values
clampMax = 1.5
clampMin = -1.5
net.train()
itr = 1
while itr < args.niters:
# train
for x0 in batch_iter(data.trn.x, shuffle=True):
x0 = cvt(x0)
optim.zero_grad()
# clip parameters
for p in net.parameters():
p.data = torch.clamp(p.data, clampMin, clampMax)
currParams = net.state_dict()
loss,cs = compute_loss(net, x0, nt=nt)
loss.backward()
optim.step()
timeMeter.update(time.time() - end)
log_message = (
'{:05d} {:6.3f} {:7.1e} {:9.3e} {:9.3e} {:9.3e} {:9.3e} '.format(
itr, timeMeter.val, optim.param_groups[0]['lr'], loss, cs[0], cs[1], cs[2]
)
)
if torch.isnan(loss): # catch NaNs when hyperparameters are poorly chosen
logger.info(log_message)
logger.info("NaN encountered....exiting prematurely")
logger.info("Training Time: {:} seconds".format(timeMeter.sum))
logger.info('File: ' + start_time + '_{:}_alph{:}_{:}_m{:}_checkpt.pth'.format(
args.data, int(net.alph[1]), int(net.alph[2]), m)
)
exit(1)
# validation
if itr % args.val_freq == 0 or itr == args.niters:
net.eval()
with torch.no_grad():
valLossMeter = utils.AverageMeter()
valAlphMeterL = utils.AverageMeter()
valAlphMeterC = utils.AverageMeter()
valAlphMeterR = utils.AverageMeter()
for x0 in batch_iter(data.val.x, batch_size=test_batch_size):
x0 = cvt(x0)
nex = x0.shape[0]
val_loss, val_cs = compute_loss(net, x0, nt=nt_val)
valLossMeter.update(val_loss.item(), nex)
valAlphMeterL.update(val_cs[0].item(), nex)
valAlphMeterC.update(val_cs[1].item(), nex)
valAlphMeterR.update(val_cs[2].item(), nex)
# add to print message
log_message += ' {:9.3e} {:9.3e} {:9.3e} {:9.3e} '.format(
valLossMeter.avg, valAlphMeterL.avg, valAlphMeterC.avg, valAlphMeterR.avg
)
# save best set of parameters
if valLossMeter.avg < best_loss:
n_vals_wo_improve = 0
best_loss = valLossMeter.avg
best_cs = [ valAlphMeterL.avg, valAlphMeterC.avg, valAlphMeterR.avg ]
utils.makedirs(args.save)
bestParams = net.state_dict()
torch.save({
'args': args,
'state_dict': bestParams,
}, os.path.join(args.save, start_time + '_{:}_alph{:}_{:}_m{:}_checkpt.pth'.format(args.data,int(net.alph[1]),int(net.alph[2]),m)))
else:
n_vals_wo_improve+=1
net.train()
log_message += ' no improve: {:d}/{:d}'.format(n_vals_wo_improve, args.early_stopping)
logger.info(log_message) # print iteration
# create plots for assessment mid-training
if itr % args.viz_freq == 0:
with torch.no_grad():
net.eval()
currState = net.state_dict()
net.load_state_dict(bestParams)
# plot one batch
p_samples = cvt(data.val.x[0:test_batch_size,:])
nSamples = p_samples.shape[0]
y = cvt(torch.randn(nSamples,d)) # sampling from rho_1 / standard normal
sPath = os.path.join(args.save, 'figs', start_time + '_{:04d}.png'.format(itr))
plot4(net, p_samples, y, nt_val, sPath, sTitle='loss {:.2f} , C {:.2f}'.format(best_loss, best_cs[1] ))
net.load_state_dict(currState)
net.train()
if args.drop_freq == 0: # if set to the code setting 0 , the lr drops based on validation
if n_vals_wo_improve > args.early_stopping:
if ndecs>2:
logger.info("early stopping engaged")
logger.info("Training Time: {:} seconds".format(timeMeter.sum))
logger.info('File: ' + start_time + '_{:}_alph{:}_{:}_m{:}_checkpt.pth'.format(
args.data, int(net.alph[1]), int(net.alph[2]), m)
)
exit(0)
else:
update_lr(optim, n_vals_wo_improve)
n_vals_wo_improve = 0
else:
# shrink step size
if itr % args.drop_freq == 0:
for p in optim.param_groups:
p['lr'] /= args.lr_drop
print("lr: ", p['lr'])
itr += 1
end = time.time()
# end batch_iter
logger.info("Training Time: {:} seconds".format(timeMeter.sum))
logger.info('Training has finished. ' + start_time + '_{:}_alph{:}_{:}_m{:}_checkpt.pth'.format(args.data,int(net.alph[1]),int(net.alph[2]),m))