-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrainMnistOTflow.py
289 lines (237 loc) · 11.9 KB
/
trainMnistOTflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# trainMnistOTflow.py
# train the MNIST model with the encoder-decoder structure
import argparse
import os
import time
import datetime
import torch.optim as optim
import math
from lib import dataloader as dl
import lib.utils as utils
from lib.utils import count_parameters
import datasets
from datasets.mnist import getLoader
from src.plotter import *
from src.OTFlowProblem import *
from src.Autoencoder import *
import config
cf = config.getconfig()
if cf.gpu:
def_viz_freq = 100
def_batch = 800
def_niters = 50000
def_m = 128
def_val_freq = 20
else: # if no gpu on platform, assume debugging on a local cpu
def_viz_freq = 4
def_batch = 20
def_niters = 40
def_val_freq = 1
def_m = 16
parser = argparse.ArgumentParser('OT-Flow')
parser.add_argument(
'--data', choices=['mnist'], type=str, default='mnist'
)
parser.add_argument("--nt" , type=int, default=8, help="number of time steps")
parser.add_argument("--nt_val", type=int, default=16, help="number of time steps for validation")
parser.add_argument('--alph' , type=str, default='1.0,80.0,500.0')
parser.add_argument('--m' , type=int, default=def_m)
parser.add_argument('--d' , type=int, default=128) # encoded dimension
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--lr' , type=float, default=0.008)
parser.add_argument('--drop_freq' , type=int, default=5000, help="how often to decrease learning rate")
parser.add_argument('--lr_drop' , type=float, default=10.0**(0.5), help="how much to decrease learning rate (divide by)")
parser.add_argument('--eps' , type=float, default=10**-6)
parser.add_argument('--niters' , type=int, default=def_niters)
parser.add_argument('--batch_size' , type=int, default=def_batch)
parser.add_argument('--val_batch_size', type=int, default=def_batch)
parser.add_argument('--resume' , type=str, default=None)
parser.add_argument('--autoenc' , type=str, default=None)
parser.add_argument('--save' , type=str, default='experiments/cnf/large')
parser.add_argument('--viz_freq' , type=int, default=def_viz_freq)
parser.add_argument('--val_freq' , type=int, default=def_val_freq)
parser.add_argument('--gpu' , type=int, default=0)
parser.add_argument('--conditional', type=int, default=-1) # -1 means unconditioned
args = parser.parse_args()
args.alph = [float(item) for item in args.alph.split(',')]
# add timestamp to save path
start_time = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
# logger
utils.makedirs(args.save)
logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__))
logger.info("start time: " + start_time)
logger.info(args)
val_batch_size = args.val_batch_size if args.val_batch_size else args.batch_size
device = torch.device("cuda:" + str(args.gpu) if torch.cuda.is_available() else "cpu")
def compute_loss(net, x, nt):
Jc , costs = OTFlowProblem(x, net, [0,1], nt=nt, stepper="rk4", alph=net.alph)
return Jc, costs
if __name__ == '__main__':
prec = torch.float64
cvt = lambda x: x.type(prec).to(device, non_blocking=True)
print("device: ", device)
train_loader, val_loader, _ = getLoader(args.data, args.batch_size, args.val_batch_size, augment=False, hasGPU=cf.gpu, conditional=args.conditional)
d = args.d # encoded dimensions
# -----------AutoEncoder ------------------------------------------------------------
if args.autoenc is None: # if no trained encoder-decoder is provided, then train one
# initialize the encoder-decoder
autoEnc = Autoencoder(d)
autoEnc = autoEnc.type(prec).to(device)
print(autoEnc)
autoEnc = trainAE(autoEnc, train_loader, val_loader, args.save, start_time, argType=prec, device=device)
else:
# load the trained autoencoder
checkpt = torch.load(args.autoenc, map_location=lambda storage, loc: storage)
autoEnc = Autoencoder(d)
autoEnc.mu = checkpt["state_dict"]["mu"] # checkpt['AEmu'].to(prec)
autoEnc.std = checkpt["state_dict"]["std"] #checkpt['AEstd'].to(prec)
autoEnc.load_state_dict(checkpt["state_dict"], strict=False) # doesnt load the buffers
autoEnc = autoEnc.to(prec).to(device)
# -----------------------------------------------------------------------
nt = args.nt
nt_val = args.nt_val
nTh = 2
m = args.m
net = Phi(nTh=nTh, m=m, d=d, alph=args.alph) # the phi aka the value function
net = net.to(prec).to(device)
if args.val_freq == 0:
# if val_freq set to 0, then validate after every epoch....assume mnist train 50000
args.val_freq = math.ceil( 50000 /args.batch_size)
# ADAM optimizer
optim = torch.optim.Adam(net.parameters(), lr=args.lr, weight_decay=args.weight_decay)
logger.info(net)
logger.info("-------------------------")
logger.info("DIMENSION={:} m={:} nTh={:} alpha={:}".format(d,m,nTh,net.alph))
logger.info("nt={:} nt_val={:}".format(nt,nt_val))
logger.info("Number of trainable parameters: {}".format(count_parameters(net)))
logger.info("-------------------------")
logger.info(str(optim)) # optimizer info
logger.info("data={:} batch_size={:} gpu={:}".format(args.data, args.batch_size, args.gpu))
logger.info("maxIters={:} val_freq={:} viz_freq={:}".format(args.niters, args.val_freq, args.viz_freq))
logger.info("saveLocation = {:}".format(args.save))
logger.info("-------------------------\n")
begin = time.time()
end = begin
best_loss = float('inf')
best_costs = [0.0]*3
best_params = None
log_msg = (
'{:5s} {:6s} {:7s} {:9s} {:9s} {:9s} {:9s} {:9s} {:9s} {:9s} {:9s} '.format(
'iter', ' time','lr','loss', 'L (L_2)', 'C (loss)', 'R (HJB)', 'valLoss', 'valL', 'valC', 'valR'
)
)
logger.info(log_msg)
timeMeter = utils.AverageMeter()
clampMax = 2.0
clampMin = -2.0
net.train()
itr = 1
while itr < args.niters:
# train
for data in train_loader:
images, _ = data
# flatten images
x0 = images.view(images.size(0), -1)
x0 = cvt(x0)
x0 = autoEnc.encode(x0) # encode
x0 = (x0 - autoEnc.mu) / (autoEnc.std + args.eps) # normalize
optim.zero_grad()
# clip parameters
for p in net.parameters():
p.data = torch.clamp(p.data, clampMin, clampMax)
loss,costs = compute_loss(net, x0, nt=nt)
loss.backward()
optim.step()
timeMeter.update(time.time() - end)
log_message = (
'{:05d} {:6.3f} {:7.1e} {:9.3e} {:9.3e} {:9.3e} {:9.3e} '.format(
itr, timeMeter.val, optim.param_groups[0]['lr'], loss, costs[0], costs[1], costs[2]
)
)
if torch.isnan(loss):
logger.info(log_message)
logger.info("NaN encountered....exiting prematurely")
logger.info("Training Time: {:} seconds".format(timeMeter.sum))
logger.info('File: ' + start_time + '_{:}_alph{:}_{:}_m{:}_checkpt.pth'.format(
args.data, int(net.alph[1]), int(net.alph[2]), m)
)
exit(1)
# validation
if itr == 1 or itr % args.val_freq == 0 or itr == args.niters:
net.eval()
with torch.no_grad():
valLossMeter = utils.AverageMeter()
valAlphMeterL = utils.AverageMeter()
valAlphMeterC = utils.AverageMeter()
valAlphMeterR = utils.AverageMeter()
for data in val_loader:
images, _ = data
# flatten images
x0 = images.view(images.size(0), -1)
x0 = cvt(x0)
x0 = autoEnc.encode(x0) # encode
x0 = (x0 - autoEnc.mu) / (autoEnc.std + args.eps ) # normalize
nex = x0.shape[0]
val_loss, val_costs = compute_loss(net, x0, nt=nt_val)
valLossMeter.update(val_loss.item(), nex)
valAlphMeterL.update(val_costs[0].item(), nex)
valAlphMeterC.update(val_costs[1].item(), nex)
valAlphMeterR.update(val_costs[2].item(), nex)
if not cf.gpu: # for debugging
break
# add to print message
log_message += ' {:9.3e} {:9.3e} {:9.3e} {:9.3e} '.format(
valLossMeter.avg, valAlphMeterL.avg, valAlphMeterC.avg, valAlphMeterR.avg
)
# save best set of parameters
if valLossMeter.avg < best_loss:
logger.info('saving new best')
best_loss = valLossMeter.avg
best_costs = [ valAlphMeterL.avg, valAlphMeterC.avg, valAlphMeterR.avg ]
utils.makedirs(args.save)
best_params = net.state_dict()
torch.save({
'args': args,
'state_dict': best_params,
'autoencoder': autoEnc.state_dict(),
}, os.path.join(args.save, start_time + '_{:}_alph{:}_{:}_m{:}_checkpt.pth'.format(args.data,int(net.alph[1]),int(net.alph[2]),m)))
net.train()
logger.info(log_message) # print iteration
# create plots
if itr % args.viz_freq == 0:
with torch.no_grad():
net.eval()
currState = net.state_dict()
net.load_state_dict(best_params)
# plot one batch in R^d space
p_samples = next(iter(val_loader))[0]
p_samples = p_samples.view(p_samples.size(0), -1)
p_samples = cvt(p_samples)
p_samples = autoEnc.encode(p_samples) # encode
p_samples = (p_samples - autoEnc.mu) / (autoEnc.std + args.eps ) # normalize
nSamples = p_samples.shape[0]
y = cvt(torch.randn(nSamples,d)) # sampling from rho_1
sPath = os.path.join(args.save, 'figs', start_time + '_{:04d}.png'.format(itr))
plot4(net, p_samples, y, nt_val, sPath, sTitle='loss {:.2f} , C {:.2f}'.format(best_loss, best_costs[1] ))
# plot the Mnist images
nSamples = 8 # overwrite
p_samples = p_samples[0:nSamples,:]
y = y[0:nSamples,:]
sPath = os.path.join(args.save, 'figs', start_time + '_class{:d}_imshow{:04d}.png'.format(args.conditional, itr))
genModel = integrate(y[:, 0:d], net, [1.0, 0.0], nt_val, stepper="rk4", alph=net.alph)
genModel = genModel[:, 0:d]
genDecoded = autoEnc.decode( genModel * (autoEnc.std + args.eps ) + autoEnc.mu ) # de-normalize and decode
pDecoded = autoEnc.decode(p_samples * (autoEnc.std + args.eps) + autoEnc.mu) # de-normalize and decode
plotAutoEnc(pDecoded, genDecoded, sPath)
net.load_state_dict(currState)
net.train()
# shrink step size
if itr % args.drop_freq == 0:
for p in optim.param_groups:
p['lr'] /= args.lr_drop # 10.0**(0.5)
print("lr: ", p['lr'])
itr += 1
end = time.time()
# end batch_iter
logger.info("Training Time: {:} seconds".format(timeMeter.sum))
logger.info('Training has finished. ' + start_time + '_{:}_alph{:}_{:}_m{:}_checkpt.pth'.format(args.data,int(net.alph[1]),int(net.alph[2]),m))