-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
45 lines (35 loc) · 1.61 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from flask import Flask, request, render_template, redirect, url_for
from recommender_system.data_processor import ProcessData
from recommender_system.recommenders import CombinationRecommender
data = ProcessData.load_model()
recommender = CombinationRecommender(
data, "processed_movies_similarity.h5", "trained_svd_model.pickle")
app = Flask(__name__)
app.config.update(
TESTING=True,
)
@app.route('/', methods=['GET'])
def index():
return render_template('index.html', error=None)
@app.route('/recommend', methods=['GET', 'POST'])
def recommend():
if request.method == "GET":
return redirect(url_for('index'))
user_id = request.form.get('user_id')
nb_results = request.form.get('nb_results')
if user_id is None or nb_results is None:
return render_template("index.html", error="Il manque au moins une des deux valeurs")
user_id = int(user_id)
if user_id < 1 or user_id > 671:
return render_template("index.html", error="L'identifiant utilisateur doit se trouver entre 1 et 671")
nb_results = int(nb_results)
if nb_results < 1:
nb_results = 1
cols = ['title', 'movie_id', 'estimations']
recommended_movies = recommender.recommend(user_id, nrows=nb_results)[
cols].to_html(columns=cols, bold_rows=False, index=False)
rated_movies = recommender.data.get_ratings_by_user_id(user_id).to_html(
columns=['title', 'movie_id', 'rating'], bold_rows=False, index=False)
return render_template("recommend.html", user_id=user_id, recommended_movies=recommended_movies, rated_movies=rated_movies)
if __name__ == '__main__':
app.run()