-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdemo.py
55 lines (43 loc) · 1.66 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import argparse
import matplotlib.pyplot as plt
import chainer
import chainercv
from chainercv.datasets import coco_bbox_label_names
from chainercv import utils
from fpn import FasterRCNNFPNResNet101
from fpn import FasterRCNNFPNResNet50
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=-1)
parser.add_argument('--model', choices=('resnet50', 'resnet101'))
parser.add_argument(
'--mean', choices=('chainercv', 'detectron'), default='chainercv')
group = parser.add_mutually_exclusive_group()
group.add_argument('--pretrained-model')
group.add_argument('--snapshot')
parser.add_argument('image')
args = parser.parse_args()
if args.model == 'resnet50':
model = FasterRCNNFPNResNet50(n_fg_class=len(coco_bbox_label_names),
mean=args.mean)
elif args.model == 'resnet101':
model = FasterRCNNFPNResNet101(n_fg_class=len(coco_bbox_label_names),
mean=args.mean)
if args.pretrained_model:
chainer.serializers.load_npz(args.pretrained_model, model)
elif args.snapshot:
chainer.serializers.load_npz(
args.snapshot, model, path='updater/model:main/model/')
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu()
img = utils.read_image(args.image)
bboxes, labels, scores = model.predict([img])
bbox = bboxes[0]
label = labels[0]
score = scores[0]
chainercv.visualizations.vis_bbox(
img, bbox, label, score, label_names=coco_bbox_label_names)
plt.show()
if __name__ == '__main__':
main()