-
Notifications
You must be signed in to change notification settings - Fork 164
/
Copy pathdata_mix.py
192 lines (164 loc) · 6.36 KB
/
data_mix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import random
import numpy as np
from ixc_utils import R560_HD18_Identity_transform
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
def conv2text(sources):
END_HUMAN = '[UNUSED_TOKEN_145]\n'
END_BOT = '[UNUSED_TOKEN_145]\n'
conversation = ''
for idx, sentence in enumerate(sources):
BEGIN_SIGNAL = ''
from_str = sentence['from']
if from_str.lower() == 'human' or from_str.lower() == 'user':
from_str = '[UNUSED_TOKEN_146]user\n'
temp = (
BEGIN_SIGNAL + from_str + sentence['value'].strip() +
END_HUMAN)
else:
from_str = '[UNUSED_TOKEN_146]assistant\n'
temp = (
BEGIN_SIGNAL + from_str + sentence['value'].strip() + END_BOT)
conversation += temp
return conversation + '</s>'
class ImageProcessorHD:
def __init__(self, resolution=560, hd_num=18):
mean = (0.48145466, 0.4578275, 0.40821073)
std = (0.26862954, 0.26130258, 0.27577711)
self.normalize = transforms.Normalize(mean, std)
self.resolution = resolution
self.hd_num = hd_num
self.transform = transforms.Compose([
transforms.ToTensor(),
self.normalize,
])
def __call__(self, item):
item = Image.open(item).convert('RGB')
return self.transform(
R560_HD18_Identity_transform(
item, resolution=self.resolution, hd_num=self.hd_num))
class Mix_dataset(Dataset):
def __init__(self,
json_datas,
batch_size=1,
local_rank=0,
resolution=560,
hd_num=18):
"""vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file."""
super().__init__()
print(f'init mix data at rank {local_rank}')
self.datasets_text, self.datasets_multi = [], []
self.data_num_text, self.data_num_multi = [], []
self.batch_size = batch_size
self.set_seed = False
self.local_rank = local_rank
for _, d in json_datas.items():
if 'image' in d[0].keys():
has_img = True
else:
has_img = False
sub_data_set = Sample_dataset(
d, batch_size, has_img=has_img, hd_num=hd_num)
if has_img:
self.datasets_multi.append(sub_data_set)
self.data_num_multi.append(len(sub_data_set))
else:
self.datasets_text.append(sub_data_set)
self.data_num_text.append(len(sub_data_set))
self.data_ratio_multi = [
float(ratio) / sum(self.data_num_multi)
for ratio in self.data_num_multi
]
self.data_ratio_text = [
float(ratio) / sum(self.data_num_text)
for ratio in self.data_num_text
]
self.data_num = np.sum(self.data_num_multi) + np.sum(
self.data_num_text)
self.use_multi = 0
def __len__(self):
return int(np.sum(self.data_num) / self.batch_size)
def __getitem__(self, index):
if not self.set_seed:
random.seed(index)
self.set_seed = True
print(f'Set seed {index} for rank {self.local_rank}')
if len(self.datasets_multi) == 0 and len(self.datasets_text) == 0:
raise ValueError(
'Both _multi and _text are empty. Cannot sample any data.')
if len(self.datasets_multi) > 0 and (self.use_multi < self.batch_size
or len(self.datasets_text) == 0):
data_idx = random.choices(
range(len(self.data_ratio_multi)),
weights=self.data_ratio_multi,
k=1)[0]
sample = self.datasets_multi[data_idx].get_item()
elif len(self.datasets_text) > 0:
data_idx = random.choices(
range(len(self.data_ratio_text)),
weights=self.data_ratio_text,
k=1)[0]
sample = self.datasets_text[data_idx].get_item()
else:
raise ValueError('Unable to select a dataset for sampling.')
self.use_multi += 1
if self.use_multi > self.batch_size * 2:
self.use_multi = 0
return dict(samples=sample)
class Sample_dataset(Dataset):
def __init__(self,
raw_data,
batch_size,
has_img=True,
resolution=560,
hd_num=18):
self.raw_data = raw_data
print(f'load {len(self.raw_data)} data')
self.batch_size = batch_size
self.vis_processor = ImageProcessorHD(
resolution=resolution, hd_num=hd_num)
self.text_processor = conv2text
self.has_img = has_img
def __len__(self):
return len(self.raw_data)
def __get_item__(self, i):
conv_text = conv2text(self.raw_data[i]['conversations'])
sample = dict(text_input=conv_text, )
if self.has_img:
image_file = self.raw_data[i]['image']
if type(image_file) == str:
image = self.vis_processor(image_file)
elif type(image_file) == list:
image = [self.vis_processor(i) for i in image_file]
else:
raise NotImplementedError('Image format not supported')
sample['image'] = image
else:
sample['image'] = None
return sample
def get_item(self, ):
text_input = []
images = []
for i in range(self.batch_size):
idx = random.randrange(len(self.raw_data))
sample = self.__get_item__(idx)
text_input.append(sample['text_input'])
if sample['image'] is None:
pass
else:
images_batch = []
if type(sample['image']) is list:
for im in sample['image']:
images_batch.append(im.unsqueeze(0))
else:
images_batch.append(sample['image'].unsqueeze(0))
images.append(images_batch)
sample = {
'text_input': text_input,
'data_type': 'multi' if self.has_img else 'text',
}
if self.has_img:
sample['image'] = images
return sample