-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_0104.py
executable file
·358 lines (303 loc) · 13.1 KB
/
train_0104.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# train.py
# -*- coding:utf-8 -*-
# /home/cjs/anaconda3/envs/cuda_test/lib/python3.6/site-packages/pretrainedmodels/models/pnas
# /home/cjs/anaconda3/envs/cuda_test/lib/python3.6/site-packages/torchvision/models/resnet.py
import torch
import torch.nn as nn
import numpy as np
import torch.optim as optim
from cnn_finetune import make_model
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.optim as optim
from tensorboardX import SummaryWriter
import random
import shutil
import time
import os
from utils.resample import *
from utils.focal_loss_pytorch.focalloss import *
from sklearn.metrics import confusion_matrix
from data.config import args
from utils.interface import *
from data.dataset import *
from sklearn.model_selection import StratifiedKFold
def main(args):
np.random.seed(666)
torch.manual_seed(666)
torch.cuda.manual_seed_all(666)
random.seed(666)
# dir
file_name = os.path.basename(__file__).split('.')[0] #train
if not os.path.exists('./model/%s' % file_name):
os.makedirs('./model/%s' % file_name)
if not os.path.exists('./result/%s' % file_name):
os.makedirs('./result/%s' % file_name)
# log
if not os.path.exists('./result/%s.txt' % file_name):
with open('./result/%s.txt' % file_name, 'w') as acc_file:
pass
with open('./result/%s.txt' % file_name, 'a') as acc_file:
acc_file.write('\n%s %s\n' % (time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time())),file_name))
def save_checkpoint(state, is_best, is_lowest_loss, times):
print("save...")
filename='./model/%s/%s/checkpoint.pth.tar' % (file_name, times)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, './model/%s/%s/model_best.pth.tar' % (file_name, times))
if is_lowest_loss:
shutil.copyfile(filename, './model/%s/%s/lowest_loss.pth.tar' % (file_name, times))
def adjust_learning_rate_sgd():
nonlocal lr
lr = lr / lr_decay
return optim.SGD(model.parameters(), lr, momentum=args.momentum)
def adjust_learning_rate():
nonlocal lr
lr = lr / lr_decay
return optim.Adam(model.parameters(), lr, weight_decay=weight_decay, amsgrad=True)
# validation function
def validation(val_loader, model, criterion):
print("starting validation...")
batch_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
model.eval()
end = time.time()
for i, (images, labels) in enumerate(val_loader):
# measure data loading
image_var = torch.tensor(images).cuda(async=True)
target = torch.tensor(labels).cuda(async=True)
with torch.no_grad():
y_pred = model(image_var)
loss = criterion(y_pred, target)
# measure accuracy and record loss
prec, PRE_COUNT, pre_label = accuracy(y_pred.cpu().data, labels, topk=(1,1))
if i==0:
fisrt = labels
second = pre_label.flatten()
else:
fisrt = np.concatenate((fisrt, labels), axis=0)
second = np.concatenate((second, pre_label.flatten()), axis=0)
losses.update(loss.item(), images.size(0)) #loss.item()? images.size(0)?
acc.update(prec, PRE_COUNT)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Validation: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuray {acc.val:.3f} ({acc.avg:.3f})'.format(i, len(val_loader), batch_time=batch_time, loss=losses, acc=acc))
# confusion
C = confusion_matrix(fisrt, second)
# print(C)
nowtime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
with open('./CM/' + nowtime + 'CM.txt', 'a') as fcm:
for i in range(C.shape[0]):
fcm.write(str(C[i]))
fcm.write('\n')
fcm.write('\n\n')
print(' * Accuray {acc.avg:.3f}'.format(acc=acc), '(Previous Best Acc: %.3f)' % best_precision,
' * Loss {loss.avg:.3f}'.format(loss=losses), '(Previous Lowest Loss: %.3f)' % lowest_loss)
return acc.avg, losses.avg
# arg
lr = args.lr
lr_decay = args.lr_decay
weight_decay = args.weight_decay # 正则化
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
batch_size = args.batch_size
workers = batch_size // 2
# epoch数量,分stage跑
stage_epochs = args.stage_epochs
# initial
stage = args.stage
start_epoch = args.epoch
total_epochs = sum(stage_epochs)
best_precision = args.best_precision
lowest_loss = args.lowest_loss
print_freq = args.print_freq
evaluate = False
resume = args.resume
is_onlytest = args.is_onlytest
# model
model = make_model(args.model_name, pretrained=False, num_classes=17, dropout_p=0.5)
model = nn.DataParallel(model).cuda()
optimizer = optim.Adam(model.parameters(), lr, weight_decay=weight_decay,amsgrad=True)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=total_epochs, eta_min=0, last_epoch=-1)
if resume:
checkpoint_path = './model/%s/checkpoint.pth.tar' % file_name
if os.path.isfile(checkpoint_path):
print("=> loading checkpoint '{}'".format(checkpoint_path))
checkpoint = torch.load(checkpoint_path)
start_epoch = checkpoint['epoch'] + 1
best_precision = checkpoint['best_precision']
lowest_loss = checkpoint['lowest_loss']
stage = checkpoint['stage']
lr = checkpoint['lr']
model.load_state_dict(checkpoint['state_dict'])
# 如果终端点恰好为转换stage的点,需要特殊处理
if start_epoch in np.cumsum(stage_epochs)[:-1]:
stage += 1
scheduler.step()
# optimizer = adjust_learning_rate()
model.load_state_dict(torch.load('./model/%s/model_best.pth.tar' % file_name)['state_dict'])
print("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(resume))
# ImageNet
# normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229,0.224,0.225])
ori_train_data = LCZ_TrainData(transform = transforms.Compose([
RandomHorizontalFlip(),
RandomVerticalFlip(),
#Resize((331, 331)),
ToTensor(),
Normalize(mean=[0.129, 0.116, 0.112, 0.123, 0.164, 0.185, 0.178, 0.200, 0.173, 0.127],
std=[0.038, 0.043, 0.058, 0.054, 0.064, 0.076, 0.078, 0.085, 0.094, 0.837])]))
#Normalize(mean=[0.101, 0.109, 0.124], std=[0.066, 0.048, 0.040])]))
val_data = LCZ_ValData(transform = transforms.Compose([
#Resize((331, 331)),
ToTensor(),
Normalize(mean=[0.129, 0.116, 0.112, 0.123, 0.164, 0.185, 0.178, 0.200, 0.173, 0.127],
std=[0.038, 0.043, 0.058, 0.054, 0.064, 0.076, 0.078, 0.085, 0.094, 0.837])]))
test_data = LCZ_TestData(transform = transforms.Compose([
#Resize((331, 331)),
ToTensor(),
Normalize(mean=[0.129, 0.116, 0.112, 0.123, 0.164, 0.185, 0.178, 0.200, 0.173, 0.127],
std=[0.038, 0.043, 0.058, 0.054, 0.064, 0.076, 0.078, 0.085, 0.094, 0.837])]))
train_data = LCZ_TrainData(transform = transforms.Compose([
RandomHorizontalFlip(),
RandomVerticalFlip(),
#Resize((331, 331)),
ToTensor(),
Normalize(mean=[0.129, 0.116, 0.112, 0.123, 0.164, 0.185, 0.178, 0.200, 0.173, 0.127],
std=[0.038, 0.043, 0.058, 0.054, 0.064, 0.076, 0.078, 0.085, 0.094, 0.837])]))
train_data, val_data = resample(train_data, val_data)
# train_data.rgbs, train_data.labels = weighted_data_generate(train_data.rgbs, train_data.labels)
sfold = StratifiedKFold(n_splits=args.kfold, random_state=666, shuffle=False)
times = 0 # mark wich folds number
for train_index, val_index in sfold.split(ori_train_data.rgbs, ori_train_data.labels):
# initial
stage = args.stage
start_epoch = args.epoch
total_epochs = sum(stage_epochs)
best_precision = args.best_precision
lowest_loss = args.lowest_loss
print_freq = args.print_freq
evaluate = False
resume = args.resume
is_onlytest = args.is_onlytest
# model
model = make_model(args.model_name, pretrained=False, num_classes=17, dropout_p=0.5)
model = nn.DataParallel(model).cuda()
optimizer = optim.Adam(model.parameters(), lr, weight_decay=weight_decay,amsgrad=True)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=total_epochs, eta_min=0, last_epoch=-1)
train_data.rgbs = ori_train_data.rgbs[train_index]
train_data.labels = ori_train_data.labels[train_index]
val_data.rgbs = ori_train_data.rgbs[val_index]
val_data.labels = ori_train_data.labels[val_index]
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=workers)
val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=False, pin_memory=False, num_workers=workers)
test_loader = DataLoader(test_data, batch_size=batch_size*2, shuffle=False, pin_memory=False, num_workers=workers)
# cross entropy
criterion = FocalLoss().cuda()
# criterion = nn.CrossEntropyLoss().cuda()
writer = SummaryWriter()
if is_onlytest:
dict = {}
group_label = 0
for i in range(0, args.kfold):
best_model = torch.load('./model/%s/%s/model_best.pth.tar' % (file_name, str(i)))
model.load_state_dict(best_model['state_dict'])
group_label_tmp = test(test_loader=test_loader, model=model, times_t=i)
if i == 0:
group_label = group_label_tmp
print('group_label shape is: ', group_label.shape)
else:
group_label = np.vstack((group_label, group_label_tmp))
print('group_label shape is: ', group_label.shape)
group_label = group_label.T
print('after group_label shape is: ', group_label.shape)
for i in range(0, group_label.shape[0]):
line = np.argmax(np.bincount(group_label[i]))
dict[i] = line
submission = "submit/all_submit_" + args.model_name + '_' + datetime.datetime.now().strftime('%Y%m%d_%H%M%S') + ".csv"
with open(submission, 'w') as f:
for i in range(0, len(dict)):
label = dict[i]
str1 = labeltostr(label)
f.write(str1)
# 释放GPU缓存
torch.cuda.empty_cache()
return
else:
pass
if evaluate:
validation(val_loader=val_loader, model=model, criterion=criterion)
else:
# train 开始训练
with open('./result/%s.txt' % file_name, 'a') as acc_file:
acc_file.write('----------------------------------')
acc_file.write('lr: %s\n kfold: %2d\n batch_size:%3d\n' % (args.lr, args.kfold, args.batch_size))
acc_file.write(str(args.stage_epochs))
for epoch in range(start_epoch, total_epochs):
scheduler.step()
train_acc, train_loss = train(train_loader, model, criterion, optimizer, epoch)
precision, avg_loss = validation(val_loader, model, criterion)
writer.add_scalars('loss/scalar_group', {'train_loss':train_loss, 'val_loss':avg_loss}, epoch)
writer.add_scalars('accuracy/scalar_group', {'train_acc':train_acc, 'val_acc':precision}, epoch)
writer.add_scalars('loss_accuracy/scalar_group', {'train_loss':train_loss, 'val_loss':precision}, epoch)
# 在日志文件中记录每个epoch的精度和loss
with open('./result/%s.txt' % file_name, 'a') as acc_file:
acc_file.write('Times: %2d, Epoch: %2d, Prcision: %.8f, Loss: %.8f, T_Prcision: %.8f, T_Loss: %.8f\n' % (times, epoch, precision, avg_loss, train_acc, train_loss))
is_best = precision > best_precision
is_lowest_loss = avg_loss < lowest_loss
best_precision = max(precision, best_precision)
lowest_loss = min(avg_loss, lowest_loss)
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'best_precision': best_precision,
'lowest_loss': lowest_loss,
'stage': stage,
'lr': lr,
}
save_checkpoint(state, is_best, is_lowest_loss, str(times))
# 判断是否进行下一个stage
if (epoch + 1) in np.cumsum(stage_epochs)[:-1]:
stage +=1
# optimizer = adjust_learning_rate()
model.load_state_dict(torch.load('./model/%s/%s/model_best.pth.tar' % (file_name, str(times)))['state_dict'])
print('Step into next stage')
with open('./results/%s.txt' % file_name, 'a') as acc_file:
acc_file.write('------------------Step into next stage-------------------------\n')
writer.export_scalars_to_json("./all_scalars.json")
writer.close()
with open('./result/%s.txt' % file_name, 'a') as acc_file:
acc_file.write('* best acc: %.8f %s\n' % (best_precision, os.path.basename(__file__)))
with open('./result/best_acc.txt', 'a') as acc_file:
acc_file.write('%s * best acc: %.8f %s\n' % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())), best_precision,os.path.basename(__file__)))
times += 1
dict = {}
group_label = 0
for i in range(0, args.kfold):
best_model = torch.load('./model/%s/%s/model_best.pth.tar' % (file_name, str(i)))
model.load_state_dict(best_model['state_dict'])
group_label_tmp = test(test_loader=test_loader, model=model, times_t=i)
if i == 0:
group_label = group_label_tmp
else:
group_label = np.vstack((group_label, group_label_tmp))
group_label = group_label.T
print('group_label shape is: ', group_label.shape)
for i in range(0, group_label.shape[0]):
line = np.argmax(np.bincount(group_label[i]))
dict[i] = line
submission = "submit/all_submit_" + args.model_name + '_' + datetime.datetime.now().strftime('%Y%m%d_%H%M%S') + ".csv"
with open(submission, 'w') as f:
for i in range(0, len(dict)):
label = dict[i]
str1 = labeltostr(label)
f.write(str1)
torch.cuda.empty_cache()
if __name__ == '__main__':
main(args)