-
-
Notifications
You must be signed in to change notification settings - Fork 164
/
Copy pathkmeans.R
47 lines (41 loc) · 1.18 KB
/
kmeans.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# K-Means Clustering
# Importing the dataset
dataset = read.csv('Mall_Customers.csv')
dataset = dataset[4:5]
# Splitting the dataset into the Training set and Test set
# install.packages('caTools')
# library(caTools)
# set.seed(123)
# split = sample.split(dataset$DependentVariable, SplitRatio = 0.8)
# training_set = subset(dataset, split == TRUE)
# test_set = subset(dataset, split == FALSE)
# Feature Scaling
# training_set = scale(training_set)
# test_set = scale(test_set)
# Using the elbow method to find the optimal number of clusters
set.seed(6)
wcss = vector()
for (i in 1:10) wcss[i] = sum(kmeans(dataset, i)$withinss)
plot(1:10,
wcss,
type = 'b',
main = paste('The Elbow Method'),
xlab = 'Number of clusters',
ylab = 'WCSS')
# Fitting K-Means to the dataset
set.seed(29)
kmeans = kmeans(x = dataset, centers = 5)
y_kmeans = kmeans$cluster
# Visualising the clusters
library(cluster)
clusplot(dataset,
y_kmeans,
lines = 0,
shade = TRUE,
color = TRUE,
labels = 2,
plotchar = FALSE,
span = TRUE,
main = paste('Clusters of customers'),
xlab = 'Annual Income',
ylab = 'Spending Score')