-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathenv_visualizer.py
679 lines (577 loc) · 31 KB
/
env_visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
import marinenav_env.envs.marinenav_env as marinenav_env
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.animation as animation
import copy
import scipy.spatial
import gym
import json
class EnvVisualizer:
def __init__(self,
seed:int=0,
cvar_num:int=0, # Number of CVaR (only available in mode 5)
draw_envs:bool=False, # Mode 2: plot the envrionment
draw_traj:bool=False, # Mode 3: plot final trajectories given action sequences
video_plots:bool=False, # Mode 4: Generate plots for a video
plot_dist:bool=False, # If return distributions are needed (for IQN agent) in the video
plot_qvalues:bool=False, # If Q values are needed in the video
dpi:int=96, # Monitor DPI
):
self.env = marinenav_env.MarineNavEnv(seed)
self.env.reset()
self.fig = None # figure for visualization
self.axis_graph = None # sub figure for the map
self.robot_plot = None
self.robot_last_pos = None
self.robot_traj_plot = []
self.sonar_beams_plot = []
self.axis_title = None # sub figure for title
self.axis_action = None # sub figure for action command and steer data
self.axis_goal = None # sub figure for relative goal measurment
self.axis_sonar = None # sub figure for Sonar measurement
self.axis_dvl = None # sub figure for DVL measurement
self.axis_dist = [] # sub figure(s) for return distribution of actions
self.axis_qvalues = None # subfigure for Q values of actions
self.cvar_num = cvar_num # number of CVaR values to plot
self.episode_actions = [] # action sequence load from episode data
self.episode_actions_quantiles = None
self.episode_actions_taus = None
self.plot_dist = plot_dist # draw return distribution of actions
self.plot_qvalues = plot_qvalues # draw Q values of actions
self.draw_envs = draw_envs # draw only the envs
self.draw_traj = draw_traj # draw only final trajectories
self.video_plots = video_plots # draw video plots
self.plots_save_dir = None # video plots save directory
self.dpi = dpi # monitor DPI
self.agent = None # agent name
def init_visualize(self,
env_configs=None # used in Mode 2
):
# initialize subplot for the map, robot state and sensor measurments
if self.draw_envs:
# Mode 2: plot final trajectories given action sequences
self.fig, self.axis_graphs = plt.subplots(1,len(env_configs),figsize=(24,8))
elif self.draw_traj:
# Mode 3: plot the envrionment
self.fig, self.axis_graph = plt.subplots(figsize=(8,8))
elif self.video_plots:
# Mode 4: Generate 1080p video plots
w = 1920
h = 1080
self.fig = plt.figure(figsize=(w/self.dpi,h/self.dpi),dpi=self.dpi)
if self.plot_dist:
assert self.cvar_num > 0, "cvar_num should be greater than 0 if plot_dist"
spec = self.fig.add_gridspec(7,3+self.cvar_num)
self.axis_title = self.fig.add_subplot(spec[0:2,:])
self.axis_title.text(-0.9,0.5,"Adaptive IQN performance",fontweight="bold",fontsize=45)
self.axis_title.text(-0.9,0,"1. Equivalent to a greedy agent when no obstcles are detected",fontsize=20)
self.axis_title.text(-0.9,-0.5,"2. Risk sensitivity increases when approaching obstacles",fontsize=20)
self.axis_goal = self.fig.add_subplot(spec[2,0])
self.axis_sonar = self.fig.add_subplot(spec[3:5,0])
self.axis_dvl = self.fig.add_subplot(spec[5:,0])
self.axis_graph = self.fig.add_subplot(spec[2:,1:3])
for i in range(self.cvar_num):
self.axis_dist.append(self.fig.add_subplot(spec[2:,3+i]))
elif self.plot_qvalues:
spec = self.fig.add_gridspec(13,4)
self.axis_title = self.fig.add_subplot(spec[0:3,:])
self.axis_title.text(-0.9,0,"DQN performance",fontweight="bold",fontsize=45)
self.axis_title.text(-0.9,-0.5,"Robust to current disturbance in robot motion, but not cautious enough when approaching obstacles", fontsize=20)
self.axis_goal = self.fig.add_subplot(spec[3:5,0])
self.axis_sonar = self.fig.add_subplot(spec[5:9,0])
self.axis_dvl = self.fig.add_subplot(spec[9:,0])
self.axis_graph = self.fig.add_subplot(spec[3:,1:3])
self.axis_qvalues = self.fig.add_subplot(spec[3:,3])
else:
name = ""
if self.agent == "APF":
name = "Artificial Potential Field"
elif self.agent == "BA":
name = "Bug Algorithm"
spec = self.fig.add_gridspec(13,8)
self.axis_title = self.fig.add_subplot(spec[0:3,:])
self.axis_title.text(-0.9,0,f"{name} performance",fontweight="bold",fontsize=45)
self.axis_title.text(-0.9,-0.5,"Significantly affected by current disturbance", fontsize=20)
self.left_margin = self.fig.add_subplot(spec[3:5,0])
self.left_margin.set_xticks([])
self.left_margin.set_yticks([])
self.left_margin.spines["left"].set_visible(False)
self.left_margin.spines["top"].set_visible(False)
self.left_margin.spines["right"].set_visible(False)
self.left_margin.spines["bottom"].set_visible(False)
self.axis_goal = self.fig.add_subplot(spec[3:5,1:3])
self.axis_sonar = self.fig.add_subplot(spec[5:9,1:3])
self.axis_dvl = self.fig.add_subplot(spec[9:,1:3])
self.axis_graph = self.fig.add_subplot(spec[3:,3:7])
self.axis_action = self.fig.add_subplot(spec[5:9,7])
self.axis_title.set_xlim([-1.0,1.0])
self.axis_title.set_ylim([-1.0,1.0])
self.axis_title.set_xticks([])
self.axis_title.set_yticks([])
self.axis_title.spines["left"].set_visible(False)
self.axis_title.spines["top"].set_visible(False)
self.axis_title.spines["right"].set_visible(False)
self.axis_title.spines["bottom"].set_visible(False)
else:
# Mode 1 (default): Display an episode
self.fig = plt.figure(figsize=(24,16))
spec = self.fig.add_gridspec(5,3)
self.axis_graph = self.fig.add_subplot(spec[:,:2])
self.axis_action = self.fig.add_subplot(spec[0,2])
self.axis_sonar = self.fig.add_subplot(spec[1:3,2])
self.axis_dvl = self.fig.add_subplot(spec[3:,2])
self.robot_last_pos = None
if self.draw_envs:
for i,env_config in enumerate(env_configs):
self.load_episode(env_config)
self.plot_graph(self.axis_graphs[i])
else:
self.plot_graph(self.axis_graph)
def plot_graph(self,axis):
# plot current velocity in the map
if self.draw_envs:
x_pos = list(np.linspace(0.0,self.env.width,100))
y_pos = list(np.linspace(0.0,self.env.height,100))
else:
x_pos = list(np.linspace(-2.5,self.env.width+2.5,110))
y_pos = list(np.linspace(-2.5,self.env.height+2.5,110))
pos_x = []
pos_y = []
arrow_x = []
arrow_y = []
speeds = np.zeros((len(x_pos),len(y_pos)))
for m,x in enumerate(x_pos):
for n,y in enumerate(y_pos):
v = self.env.get_velocity(x,y)
speed = np.clip(np.linalg.norm(v),0.1,10)
pos_x.append(x)
pos_y.append(y)
arrow_x.append(v[0])
arrow_y.append(v[1])
speeds[n,m] = np.log(speed)
cmap = cm.Blues(np.linspace(0,1,20))
cmap = mpl.colors.ListedColormap(cmap[10:,:-1])
axis.contourf(x_pos,y_pos,speeds,cmap=cmap)
axis.quiver(pos_x, pos_y, arrow_x, arrow_y, width=0.001)
if not self.draw_envs:
# plot the evaluation boundary
boundary = np.array([[0.0,0.0],
[self.env.width,0.0],
[self.env.width,self.env.height],
[0.0,self.env.height],
[0.0,0.0]])
axis.plot(boundary[:,0],boundary[:,1],color = 'r',linestyle="-.",linewidth=3)
# plot obstacles in the map
l = True
for obs in self.env.obstacles:
if l:
axis.add_patch(mpl.patches.Circle((obs.x,obs.y),radius=obs.r,color='m'))
l = False
else:
axis.add_patch(mpl.patches.Circle((obs.x,obs.y),radius=obs.r,color='m'))
axis.set_aspect('equal')
if self.draw_envs:
axis.set_xlim([0.0,self.env.width])
axis.set_ylim([0.0,self.env.height])
else:
axis.set_xlim([-2.5,self.env.width+2.5])
axis.set_ylim([-2.5,self.env.height+2.5])
axis.set_xticks([])
axis.set_yticks([])
# plot start and goal state
axis.scatter(self.env.start[0],self.env.start[1],marker="o",color="yellow",s=320,zorder=5)
axis.scatter(self.env.goal[0],self.env.goal[1],marker="*",color="yellow",s=1000,zorder=5)
def plot_robot(self):
if self.robot_plot != None:
self.robot_plot.remove()
d = np.matrix([[0.5*self.env.robot.length],[0.5*self.env.robot.width]])
rot = np.matrix([[np.cos(self.env.robot.theta),-np.sin(self.env.robot.theta)], \
[np.sin(self.env.robot.theta),np.cos(self.env.robot.theta)]])
d_r = rot * d
xy = (self.env.robot.x-d_r[0,0],self.env.robot.y-d_r[1,0])
angle_d = self.env.robot.theta / np.pi * 180
self.robot_plot = self.axis_graph.add_patch(mpl.patches.Rectangle(xy,self.env.robot.length, \
self.env.robot.width, \
color='g',angle=angle_d,zorder=7))
if self.robot_last_pos != None:
h = self.axis_graph.plot((self.robot_last_pos[0],self.env.robot.x),
(self.robot_last_pos[1],self.env.robot.y),
color='tab:orange')
self.robot_traj_plot.append(h)
self.robot_last_pos = [self.env.robot.x, self.env.robot.y]
def plot_action_and_steer_state(self,action):
self.axis_action.clear()
a,w = self.env.robot.actions[action]
if self.video_plots:
self.axis_action.text(0,3,"Action",fontsize=15)
self.axis_action.text(0,2,f"a: {a:.2f}",fontsize=15)
self.axis_action.text(0,1,f"w: {w:.2f}",fontsize=15)
self.axis_action.set_ylim([0,4])
else:
x_pos = 0.15
self.axis_action.text(x_pos,6,"Steer actions",fontweight="bold",fontsize=15)
self.axis_action.text(x_pos,5,f"Acceleration (m/s^2): {a:.2f}",fontsize=15)
self.axis_action.text(x_pos,4,f"Angular velocity (rad/s): {w:.2f}",fontsize=15)
# robot steer state
self.axis_action.text(x_pos,2,"Steer states",fontweight="bold",fontsize=15)
self.axis_action.text(x_pos,1,f"Forward speed (m/s): {self.env.robot.speed:.2f}",fontsize=15)
self.axis_action.text(x_pos,0,f"Orientation (rad): {self.env.robot.theta:.2f}",fontsize=15)
self.axis_action.set_ylim([-1,7])
self.axis_action.set_xticks([])
self.axis_action.set_yticks([])
self.axis_action.spines["left"].set_visible(False)
self.axis_action.spines["top"].set_visible(False)
self.axis_action.spines["right"].set_visible(False)
self.axis_action.spines["bottom"].set_visible(False)
def plot_measurements(self):
self.axis_sonar.clear()
self.axis_dvl.clear()
for plot in self.sonar_beams_plot:
plot[0].remove()
self.sonar_beams_plot.clear()
if self.video_plots:
self.axis_goal.clear()
legend_size = 12
font_size = 15
abs_velocity_r, sonar_points_r, goal_r = self.env.get_observation(for_visualize=True)
# plot Sonar beams in the world frame
for point in self.env.robot.sonar.reflections:
x = point[0]
y = point[1]
if point[-1] == 0:
# compute beam range end point
x = self.env.robot.x + 0.5 * (x-self.env.robot.x)
y = self.env.robot.y + 0.5 * (y-self.env.robot.y)
else:
# mark the reflection point
self.sonar_beams_plot.append(self.axis_graph.plot(x,y,marker='x',color='r',zorder=6))
self.sonar_beams_plot.append(self.axis_graph.plot([self.env.robot.x,x],[self.env.robot.y,y],linestyle='--',color='r',zorder=6))
# plot Sonar reflections in the robot frame (rotate x-axis by 90 degree (upward) in the plot)
low_angle = np.pi/2 + self.env.robot.sonar.beam_angles[0]
high_angle = np.pi/2 + self.env.robot.sonar.beam_angles[-1]
low_angle_d = low_angle / np.pi * 180
high_angle_d = high_angle / np.pi * 180
self.axis_sonar.add_patch(mpl.patches.Wedge((0.0,0.0),self.env.robot.sonar.range, \
low_angle_d,high_angle_d,color="r",alpha=0.2))
for i in range(np.shape(sonar_points_r)[1]):
if sonar_points_r[2,i] == 1:
# rotate by 90 degree
self.axis_sonar.plot(-sonar_points_r[1,i],sonar_points_r[0,i],'bo',markersize=6)
self.axis_sonar.set_xlim([-self.env.robot.sonar.range-1,self.env.robot.sonar.range+1])
self.axis_sonar.set_ylim([-1,self.env.robot.sonar.range+1])
self.axis_sonar.set_aspect('equal')
self.axis_sonar.set_title('LiDAR Reflections',fontsize=font_size)
self.axis_sonar.set_xticks([])
self.axis_sonar.set_yticks([])
self.axis_sonar.spines["left"].set_visible(False)
self.axis_sonar.spines["top"].set_visible(False)
self.axis_sonar.spines["right"].set_visible(False)
self.axis_sonar.spines["bottom"].set_visible(False)
# plot robot velocity in the robot frame (rotate x-axis by 90 degree (upward) in the plot)
h1 = self.axis_dvl.arrow(0.0,0.0,0.0,1.0, \
color='k', \
width = 0.02, \
head_width = 0.08, \
head_length = 0.12, \
length_includes_head=True, \
label='steer direction')
# rotate by 90 degree
h2 = self.axis_dvl.arrow(0.0,0.0,-abs_velocity_r[1],abs_velocity_r[0], \
color='r',width=0.02, head_width = 0.08, \
head_length = 0.12, length_includes_head=True, \
label='velocity wrt seafloor')
x_range = np.max([2,np.abs(abs_velocity_r[1])])
y_range = np.max([2,np.abs(abs_velocity_r[0])])
mpl.rcParams["font.size"]=12
self.axis_dvl.set_xlim([-x_range,x_range])
self.axis_dvl.set_ylim([-1,y_range])
self.axis_dvl.set_aspect('equal')
self.axis_dvl.legend(handles=[h1,h2],loc='lower center',fontsize=legend_size)
self.axis_dvl.set_title('Velocity Measurement',fontsize=font_size)
self.axis_dvl.set_xticks([])
self.axis_dvl.set_yticks([])
self.axis_dvl.spines["left"].set_visible(False)
self.axis_dvl.spines["top"].set_visible(False)
self.axis_dvl.spines["right"].set_visible(False)
self.axis_dvl.spines["bottom"].set_visible(False)
if self.video_plots:
# give goal position info in the robot frame
x1 = 0.07
x2 = x1 + 0.13
self.axis_goal.text(x1,0.5,"Goal Position (Relative)",fontsize=font_size)
self.axis_goal.text(x2,0.25,f"({goal_r[0]:.2f}, {goal_r[1]:.2f})",fontsize=font_size)
self.axis_goal.set_xticks([])
self.axis_goal.set_yticks([])
self.axis_goal.spines["left"].set_visible(False)
self.axis_goal.spines["top"].set_visible(False)
self.axis_goal.spines["right"].set_visible(False)
self.axis_goal.spines["bottom"].set_visible(False)
def plot_return_dist(self,action):
for axis in self.axis_dist:
axis.clear()
dist_interval = 1
mean_bar = 0.35
idx = 0
xlim = [np.inf,-np.inf]
for idx, cvar in enumerate(action["cvars"]):
ylabelright=[]
quantiles = np.array(action["quantiles"][idx])
q_means = np.mean(quantiles,axis=0)
max_a = np.argmax(q_means)
for i, a in enumerate(self.env.robot.actions):
q_mean = q_means[i]
# q_mean = np.mean(quantiles[:,i])
ylabelright.append(
"\n".join([f"a: {a[0]:.2f}",f"w: {a[1]:.2f}"])
)
# ylabelright.append(f"mean: {q_mean:.2f}")
self.axis_dist[idx].axhline(i*dist_interval, color="black", linewidth=0.5, zorder=0)
self.axis_dist[idx].scatter(quantiles[:,i], i*np.ones(len(quantiles[:,i]))*dist_interval,color="g", marker="x",s=80,linewidth=3)
self.axis_dist[idx].hlines(y=i*dist_interval, xmin=np.min(quantiles[:,i]), xmax=np.max(quantiles[:,i]),zorder=0)
if i == max_a:
self.axis_dist[idx].vlines(q_mean, ymin=i*dist_interval-mean_bar, ymax=i*dist_interval+mean_bar,color="red",linewidth=5)
else:
self.axis_dist[idx].vlines(q_mean, ymin=i*dist_interval-mean_bar, ymax=i*dist_interval+mean_bar,color="blue",linewidth=3)
self.axis_dist[idx].tick_params(axis="x", labelsize=14)
self.axis_dist[idx].set_ylim([-1.0,i+1])
self.axis_dist[idx].set_yticks([])
if idx == len(action["cvars"])-1:
self.axis_dist[idx].set_yticks(range(0,i+1))
self.axis_dist[idx].yaxis.tick_right()
self.axis_dist[idx].set_yticklabels(labels=ylabelright,fontsize=12)
if idx == 0:
self.axis_dist[idx].set_title("adpative "+r'$\phi$'+f" = {cvar:.2f}",fontsize=15)
else:
self.axis_dist[idx].set_title(r'$\phi$'+f" = {cvar:.2f}",fontsize=15)
xlim[0] = min(xlim[0],np.min(quantiles)-5)
xlim[1] = max(xlim[1],np.max(quantiles)+5)
for idx, cvar in enumerate(action["cvars"]):
# self.axis_dist[idx].xaxis.set_ticks(np.arange(xlim[0],xlim[1]+1,(xlim[1]-xlim[0])/5))
self.axis_dist[idx].set_xlim(xlim)
def plot_action_qvalues(self,action):
self.axis_qvalues.clear()
dist_interval = 1
mean_bar = 0.35
ylabelright=[]
q_values = np.array(action["qvalues"])
max_a = np.argmax(q_values)
for i, a in enumerate(self.env.robot.actions):
ylabelright.append(
"\n".join([f"a: {a[0]:.2f}",f"w: {a[1]:.2f}"])
)
self.axis_qvalues.axhline(i*dist_interval, color="black", linewidth=1, zorder=0)
if i == max_a:
self.axis_qvalues.vlines(q_values[i], ymin=i*dist_interval-mean_bar, ymax=i*dist_interval+mean_bar,color="red",linewidth=8)
else:
self.axis_qvalues.vlines(q_values[i], ymin=i*dist_interval-mean_bar, ymax=i*dist_interval+mean_bar,color="blue",linewidth=5)
self.axis_qvalues.set_title("Action Values",fontsize=15)
self.axis_qvalues.tick_params(axis="x", labelsize=15)
self.axis_qvalues.set_ylim([-1.0,i+1])
self.axis_qvalues.set_yticks(range(0,i+1))
self.axis_qvalues.yaxis.tick_right()
self.axis_qvalues.set_yticklabels(labels=ylabelright,fontsize=14)
self.axis_qvalues.set_xlim([np.min(q_values)-5,np.max(q_values)+5])
def one_step(self,action):
current_velocity = self.env.get_velocity(self.env.robot.x, self.env.robot.y)
self.env.robot.update_state(action["action"],current_velocity)
self.plot_robot()
self.plot_measurements()
if not self.plot_dist and not self.plot_qvalues:
self.plot_action_and_steer_state(action["action"])
if self.step % self.env.robot.N == 0:
if self.plot_dist:
self.plot_return_dist(action)
elif self.plot_qvalues:
self.plot_action_qvalues(action)
self.step += 1
def init_animation(self):
# plot initial robot position
self.plot_robot()
# plot initial DVL and Sonar measurments
self.plot_measurements()
def visualize_control(self,action_sequence,start_idx=0):
# update robot state and make animation when executing action sequence
actions = []
# counter for updating distributions plot
self.step = start_idx
for i,a in enumerate(action_sequence):
for _ in range(self.env.robot.N):
action = {}
action["action"] = a
if self.video_plots:
if self.plot_dist:
action["cvars"] = self.episode_actions_cvars[i]
action["quantiles"] = self.episode_actions_quantiles[i]
action["taus"] = self.episode_actions_taus[i]
elif self.plot_qvalues:
action["qvalues"] = self.episode_actions_values[i]
actions.append(action)
if self.video_plots:
for i,action in enumerate(actions):
self.one_step(action)
self.fig.savefig(f"{self.plots_save_dir}/step_{self.step}.png",pad_inches=0.2,dpi=self.dpi)
else:
self.animation = animation.FuncAnimation(self.fig, self.one_step,frames=actions, \
init_func=self.init_animation,
interval=10,repeat=False)
plt.show()
def load_episode(self,episode_dict):
episode = copy.deepcopy(episode_dict)
# load env config
self.env.sd = episode["env"]["seed"]
self.env.width = episode["env"]["width"]
self.env.height = episode["env"]["height"]
self.env.r = episode["env"]["r"]
self.env.v_rel_max = episode["env"]["v_rel_max"]
self.env.p = episode["env"]["p"]
self.env.v_range = copy.deepcopy(episode["env"]["v_range"])
self.env.obs_r_range = copy.deepcopy(episode["env"]["obs_r_range"])
self.env.clear_r = episode["env"]["clear_r"]
self.env.start = np.array(episode["env"]["start"])
self.env.goal = np.array(episode["env"]["goal"])
self.env.goal_dis = episode["env"]["goal_dis"]
self.env.timestep_penalty = episode["env"]["timestep_penalty"]
# self.env.energy_penalty = np.matrix(episode["env"]["energy_penalty"])
self.env.collision_penalty = episode["env"]["collision_penalty"]
self.env.goal_reward = episode["env"]["goal_reward"]
self.env.discount = episode["env"]["discount"]
# load vortex cores
self.env.cores.clear()
centers = None
for i in range(len(episode["env"]["cores"]["positions"])):
center = episode["env"]["cores"]["positions"][i]
clockwise = episode["env"]["cores"]["clockwise"][i]
Gamma = episode["env"]["cores"]["Gamma"][i]
core = marinenav_env.Core(center[0],center[1],clockwise,Gamma)
self.env.cores.append(core)
if centers is None:
centers = np.array([[core.x,core.y]])
else:
c = np.array([[core.x,core.y]])
centers = np.vstack((centers,c))
if centers is not None:
self.env.core_centers = scipy.spatial.KDTree(centers)
# load obstacles
self.env.obstacles.clear()
centers = None
for i in range(len(episode["env"]["obstacles"]["positions"])):
center = episode["env"]["obstacles"]["positions"][i]
r = episode["env"]["obstacles"]["r"][i]
obs = marinenav_env.Obstacle(center[0],center[1],r)
self.env.obstacles.append(obs)
if centers is None:
centers = np.array([[obs.x,obs.y]])
else:
c = np.array([[obs.x,obs.y]])
centers = np.vstack((centers,c))
if centers is not None:
self.env.obs_centers = scipy.spatial.KDTree(centers)
# load robot config
self.env.robot.dt = episode["robot"]["dt"]
self.env.robot.N = episode["robot"]["N"]
self.env.robot.length = episode["robot"]["length"]
self.env.robot.width = episode["robot"]["width"]
self.env.robot.r = episode["robot"]["r"]
self.env.robot.max_speed = episode["robot"]["max_speed"]
self.env.robot.a = np.array(episode["robot"]["a"])
self.env.robot.w = np.array(episode["robot"]["w"])
self.env.robot.compute_k()
self.env.robot.compute_actions()
self.env.robot.init_theta = episode["robot"]["init_theta"]
self.env.robot.init_speed = episode["robot"]["init_speed"]
# load sonar config
self.env.robot.sonar.range = episode["robot"]["sonar"]["range"]
self.env.robot.sonar.angle = episode["robot"]["sonar"]["angle"]
self.env.robot.sonar.num_beams = episode["robot"]["sonar"]["num_beams"]
self.env.robot.sonar.compute_phi()
self.env.robot.sonar.compute_beam_angles()
# load action sequence
self.episode_actions = copy.deepcopy(episode["robot"]["action_history"])
# update env action and observation space
self.env.action_space = gym.spaces.Discrete(self.env.robot.compute_actions_dimension())
obs_len = 2 + 2 + 2 * self.env.robot.sonar.num_beams
self.env.observation_space = gym.spaces.Box(low = -np.inf * np.ones(obs_len), \
high = np.inf * np.ones(obs_len), \
dtype = np.float32)
if self.plot_dist:
# load action cvars, quantiles and taus
self.episode_actions_cvars = episode["robot"]["actions_cvars"]
self.episode_actions_quantiles = episode["robot"]["actions_quantiles"]
self.episode_actions_taus = episode["robot"]["actions_taus"]
elif self.plot_qvalues:
# load action values
self.episode_actions_values = episode["robot"]["actions_values"]
def load_episode_from_eval_files(self,config_f,eval_f,eval_id,env_id):
with open(config_f,"r") as f:
episodes = json.load(f)
episode = episodes[f"env_{env_id}"]
eval_file = np.load(eval_f,allow_pickle=True)
episode["robot"]["action_history"] = copy.deepcopy(eval_file["actions"][eval_id][env_id])
self.load_episode(episode)
def load_episode_from_json_file(self,filename):
with open(filename,"r") as f:
episode = json.load(f)
self.load_episode(episode)
def play_episode(self,start_idx=0):
self.robot_last_pos = None
for plot in self.robot_traj_plot:
plot[0].remove()
self.robot_traj_plot.clear()
current_v = self.env.get_velocity(self.env.start[0],self.env.start[1])
self.env.robot.reset_state(self.env.start[0],self.env.start[1], current_velocity=current_v)
self.init_visualize()
self.visualize_control(self.episode_actions,start_idx)
def draw_trajectory(self,
only_ep_actions:bool=True, # only draw the resulting trajectory of actions in episode data
all_actions:dict=None, # otherwise, draw all trajectories from given action sequences
fork_state_info:dict=None # if fork state is given, plot action distributions
):
# Used in Mode 3
for plot in self.robot_traj_plot:
plot[0].remove()
self.robot_traj_plot.clear()
self.init_visualize()
if only_ep_actions:
all_actions = dict(ep_agent=self.episode_actions)
plot_fork_state = True
trajs = []
for actions in all_actions.values():
traj = None
current_v = self.env.get_velocity(self.env.start[0],self.env.start[1])
self.env.robot.reset_state(self.env.start[0],self.env.start[1], current_velocity=current_v)
for idx,a in enumerate(actions):
if fork_state_info is not None and plot_fork_state:
if fork_state_info["id"] == idx:
self.plot_robot()
self.plot_measurements()
self.plot_return_dist(fork_state_info)
plot_fork_state = False
for _ in range(self.env.robot.N):
current_velocity = self.env.get_velocity(self.env.robot.x, self.env.robot.y)
self.env.robot.update_state(a,current_velocity)
curr = np.array([[self.env.robot.x, self.env.robot.y]])
if traj is None:
traj = curr
else:
traj = np.concatenate((traj,curr))
trajs.append(traj)
colors = ['tab:orange','lime','r','b']
styles = ['solid','dashed','dashdot','dashdot']
for i, l in enumerate(all_actions.keys()):
traj = trajs[i]
self.axis_graph.plot(traj[:,0],traj[:,1],label=l,linewidth=2,zorder=4+i,color=colors[i],linestyle=styles[i])
mpl.rcParams["font.size"]=15
mpl.rcParams["legend.framealpha"]=0.4
self.axis_graph.legend(loc='upper left',bbox_to_anchor=(0.18,0.95))
self.axis_graph.set_xticks([])
self.axis_graph.set_yticks([])
self.fig.savefig(f"trajectory_test.png",bbox_inches="tight",dpi=self.dpi)
def draw_video_plots(self,episode,save_dir,start_idx,agent):
# Used in Mode 4
self.agent = agent
self.load_episode(episode)
self.plots_save_dir = save_dir
self.play_episode(start_idx)
return self.step