-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathautomation_bs_v2.py
353 lines (265 loc) · 16.2 KB
/
automation_bs_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# -*- coding: utf-8 -*-
"""
Created on Thu May 12 21:55:45 2022
@author: naman
"""
import pandas as pd
import numpy as np
import os
import re
os.chdir('C:/Users/naman/Downloads')
def read_file(year,sheet_name):
df = pd.read_excel('FINAL BS 31.03.'+ str(year) + '.xls',sheet_name = sheet_name)
return df
def clean(df,year):
df = df.replace(' ',np.nan)
df = df.dropna(axis = 1, how = 'all')
df = df.iloc[3:]
df = df.iloc[:,0:4].reset_index(drop = True)
df.columns = ['Particulars','Note No','As at 31.03.'+ str(year),'As at 31.03.'+ str(year-1)]
df = df.replace(' ',np.nan).replace('PARTICULARS',np.nan)
df = df[df['As at 31.03.'+ str(year)] != 'AMOUNT (`)']
df = df[df['As at 31.03.'+ str(year)] != '31.03.'+ str(year)]
df.dropna(axis = 0, how = 'all', inplace = True)
df = df.reset_index(drop = True)
df = df[~(df['Particulars'].isin(['(CIN NO : )','(INDIA) PRIVATE LIMITED','MW. COM (INDIA) PRIVATE LIMITED']))]
return df
def clean_groupings(grouping_df,year):
grouping_df = grouping_df.iloc[2:]
grouping_df = grouping_df[grouping_df['Particulars'] != 'TRADE RECEIVABLES']
grouping_df = grouping_df[~(grouping_df['Particulars'].str.contains('GROUPING TO THE FINANCIAL STATEMENT AS AT').fillna(False))]
grouping_df.loc[grouping_df['As at 31.03.'+str(year)].notna(),'As at 31.03.'+str(year-1)] = grouping_df['As at 31.03.'+str(year-1)].fillna(0)
grouping_df.loc[grouping_df['As at 31.03.'+str(year-1)].notna(),'As at 31.03.'+str(year)] = grouping_df['As at 31.03.'+str(year)].fillna(0)
grouping_df = grouping_df[grouping_df['As at 31.03.'+str(year)] != 'As at']
grouping_df['groups'] = grouping_df['As at 31.03.'+str(year-1)].isnull().astype(int).cumsum()
grouping_df.loc[grouping_df['As at 31.03.'+str(year-1)].notnull(),'groups'] = np.nan
grouping_df.loc[grouping_df['groups'].notnull(),'groups'] = grouping_df['Particulars']
grouping_df['groups'] = grouping_df['groups'].ffill(axis = 0)
grouping_df['Particulars'] = grouping_df['Particulars'].combine_first(grouping_df['Note No'])
grouping_df.loc[grouping_df['Particulars'].fillna('').str.lower().str.contains('total'),'Note No'] = grouping_df['Note No'].combine_first(grouping_df['Particulars'])
grouping_df['temp_note'] = grouping_df['Note No'].str.lower().str.replace('sub','').str.replace(' ','').str.lstrip().str.upper()
grouping_df['string_len'] = grouping_df['temp_note'].fillna('').apply(len)
grouping_df.loc[(grouping_df['Note No'].str.contains('TOTAL')) &
(grouping_df['string_len'] > 8), 'Note No'] = 'TOTAL'
grouping_df = grouping_df.drop(['temp_note','string_len'],axis = 1)
null_row = pd.DataFrame([[np.nan]*len(grouping_df.columns)],columns = grouping_df.columns)
grouping_df = grouping_df.append(null_row)
grouping_df.loc[(grouping_df['As at 31.03.'+str(year)].isnull()) &
(grouping_df['As at 31.03.'+str(year-1)].isnull()),'temp_total'] = 'TOTAL'
grouping_df['temp_total'] = grouping_df['temp_total'].shift(-1)
grouping_df['Note No'] = grouping_df['Note No'].combine_first(grouping_df['temp_total'])
grouping_df = grouping_df.drop(['temp_total'],axis = 1)
grouping_df.loc[grouping_df['Particulars'] == grouping_df['groups'],'Note No'] = np.nan
x = grouping_df[grouping_df['Particulars'] == grouping_df['groups']].iloc[:1]
x['major_group'] = x['groups']
grouping_df = grouping_df.merge(x, how = 'left')
# def clean_notes(strValue):
# return re.sub('[\(\[].*?[\)\]]', '', strValue.lower()).strip()
# grouping_df['temp_note'] = grouping_df['Note No'].fillna('').apply(clean_notes)
# grouping_df.loc[grouping_df['temp_note'] != 'total','temp_note'] = np.nan
grouping_df['temp_note'] = grouping_df['Note No'].shift()
grouping_df.loc[grouping_df['temp_note'].str.lower().str.strip() == 'total','major_group'] = grouping_df['Particulars']
grouping_df['major_group'] = grouping_df['major_group'].ffill(axis = 0)
grouping_df = grouping_df.drop(['temp_note'],axis = 1)
grouping_df['major_group'].iloc[-1] = np.nan
return grouping_df
def clean_cfs(df,year):
df = df.replace(' ',np.nan)
df = df.dropna(axis = 1, how = 'all')
df = df.iloc[3:]
df = df.iloc[:,0:5].reset_index(drop = True)
df.columns = ['Serial','Particulars','Note No','As at 31.03.'+ str(year),'As at 31.03.'+ str(year-1)]
df = df.replace(' ',np.nan).replace('PARTICULARS',np.nan)
df = df[df['As at 31.03.'+ str(year)] != 'AMOUNT (`)']
df = df[df['As at 31.03.'+ str(year)] != '31.03.'+ str(year)]
df.dropna(axis = 0, how = 'all', inplace = True)
df = df.reset_index(drop = True)
return df
# =============================================================================
# Part 1 - Groupings
# =============================================================================
#Clean Groupings
def merge_groups(year1,year2,sheet_name):
grouping_2020 = clean(read_file(year1,sheet_name),year1)
grouping_2021 = clean(read_file(year2,sheet_name),year2)
grouping_2020 = clean_groupings(grouping_2020,year1).reset_index(drop = True)
grouping_2021 = clean_groupings(grouping_2021,year2).reset_index(drop = True)
groups_2021 = grouping_2021['major_group'].dropna().unique().tolist()
groups_2020 = grouping_2020['major_group'].dropna().unique().tolist()
if len([item for item in groups_2021 if item not in groups_2020]) > 0:
groups = groups_2021
elif len([item for item in groups_2020 if item not in groups_2021]) >= 0:
groups = groups_2020
final_grouped = pd.DataFrame(columns = ['Particulars','Note No','As at 31.03.2021', 'As at 31.03.2020','As at 31.03.2019','groups','major_group','sheet_name'])
for group_name in groups:
test = grouping_2020[grouping_2020['major_group'] == group_name]
test1 = grouping_2021[grouping_2021['major_group'] == group_name]
for sub_group in test['groups'].unique().tolist():
test_sub = test[test['groups'] == sub_group][['Particulars','As at 31.03.2020', 'As at 31.03.2019','groups','major_group']]
test1_sub = test1[test1['groups'] == sub_group][['Particulars','Note No','As at 31.03.2021','As at 31.03.2020','groups','major_group']]
grouped = test1_sub.merge(test_sub, how = 'outer', on = ['Particulars','As at 31.03.2020','groups','major_group'])
cols = grouped.columns.tolist()
group_heading = grouped[grouped['Particulars'] == sub_group]
grouped = grouped[grouped['Particulars'] != sub_group]
total = grouped[grouped['Note No'].fillna('').str.lower().str.contains('total')]
grouped = grouped[~(grouped['Note No'].fillna('').str.lower().str.contains('total'))]
grouped[['As at 31.03.2021', 'As at 31.03.2020','As at 31.03.2019']] = grouped[['As at 31.03.2021', 'As at 31.03.2020','As at 31.03.2019']].fillna(0)
grouped = grouped.groupby(['Particulars','groups','major_group'],as_index = False)[['As at 31.03.2021', 'As at 31.03.2020','As at 31.03.2019']].sum()
grouped['Note No'] = np.nan
if len(grouped) == 0:
grouped = pd.DataFrame(columns = cols)
else:
grouped = grouped[cols]
grouped = grouped.sort_values(['As at 31.03.2021', 'As at 31.03.2020','As at 31.03.2019'],ascending=False)
grouped = group_heading.append(grouped)
grouped = grouped.append(total)
grouped['groups'] = sub_group
grouped['major_group'] = group_name
grouped['sheet_name'] = sheet_name
grouped = grouped[final_grouped.columns.tolist()]
grouped.loc[grouped['Particulars'] == grouped['groups'],'Note No'] = np.nan
final_grouped = final_grouped.append(grouped)
final_grouped = final_grouped[final_grouped['As at 31.03.2020']!='As at']
final_grouped = final_grouped.drop_duplicates()
return final_grouped
final_grouped_notes = merge_groups(2020, 2021, 'Groupings')
final_grouped_creditors = merge_groups(2020, 2021, 'Creditor 2019-20')
final_grouped_debtors = merge_groups(2020, 2021, 'Debtor 2019-20')
sheet_name = 'Groupings'
final_grouped = final_grouped_notes.append([final_grouped_creditors,final_grouped_debtors])
# =============================================================================
# Part 2 - Statements
# =============================================================================
#Read Statements
df_2020 = clean(read_file(2020,'statement'),2020)
df_2021 = clean(read_file(2021,'statement'),2021)
cfs_2020 = clean_cfs(read_file(2020,'CashFlow'),2020)
cfs_2021 = clean_cfs(read_file(2021,'CashFlow'),2021)
df_2020 = cfs_2020.append(df_2020).reset_index(drop = True)
df_2021 = cfs_2021.append(df_2021).reset_index(drop = True)
statements = ['CASH FLOW STATEMENT',
'BALANCE SHEET',
'STATEMENT OF PROFIT AND LOSS',
'NOTES TO FINANCIAL STATEMENT']
def separate(dataframe,i, statements):
start = dataframe[(dataframe['Particulars'].str.contains(statements[i]).fillna(False)) |
(dataframe['Serial'].str.contains(statements[i]).fillna(False))].index[0]
if i == len(statements)-1:
fs = dataframe.iloc[start:]
else:
end = dataframe[dataframe['Particulars'].str.contains(statements[i+1]).fillna(False)].index[0]
fs = dataframe.iloc[start:end]
fs = fs.iloc[2:].reset_index(drop = True)
return fs
dict_fs = {}
for i in range(len(statements)):
fs_2020 = separate(df_2020,i,statements)
fs_2021 = separate(df_2021,i,statements)
fs = fs_2021.merge(fs_2020, how = 'outer').drop_duplicates()
fs = fs[~((fs['Particulars'].isnull()) &
(fs['Note No'].isnull()))]
fs['statement'] = statements[i]
dict_fs[statements[i]] = fs
# =============================================================================
# Part 3 - Writing all statements and groupings to Excel
# =============================================================================
final = pd.concat([dict_fs[statements[0]],dict_fs[statements[1]],dict_fs[statements[2]]])
statements = final['statement'].unique().tolist()
writer = pd.ExcelWriter('Data Book 2019-21.xlsx', engine='xlsxwriter')
for statement in statements:
df = final[final['statement'] == statement]
df = df.drop(['statement'],axis = 1)
df = df.dropna(axis = 1, how = 'all')
df.to_excel(writer, sheet_name=statement,index = False)
#final_grouped.drop(['groups'],axis = 1).to_excel(writer, sheet_name='GROUPINGS_ALL',index = False)
# =============================================================================
# Rough work/ Trial and Error
# =============================================================================
notes = dict_fs['NOTES TO FINANCIAL STATEMENT']
notes = notes[~(notes['Particulars'].str.contains('FOR THE YEAR ENDED').fillna(False))]
all_notes = notes[notes['Particulars'].fillna('').str.contains('NOTE ')][['Particulars']]
all_notes['Note'] = all_notes['Particulars'].fillna('').apply(lambda x : ''.join(filter(str.isdigit, x)))
all_notes['Note Name'] = all_notes['Particulars'].fillna('').str.partition(': ')[2]
notes = notes.merge(all_notes, how = 'left')
notes['Note'] = notes['Note'].ffill(axis = 0)
notes['Note Name'] = notes['Note Name'].ffill(axis = 0)
notes.loc[(notes['As at 31.03.2021'].isnull()) &
(notes['As at 31.03.2020'].isnull()) &
(notes['As at 31.03.2019'].isnull()),'Group Name'] = notes['Particulars']
notes['Group Name'] = notes['Group Name'].ffill(axis = 0)
notes = notes.drop(['Serial','statement'],axis = 1)
notes_test = notes[(notes['As at 31.03.2021'].notna()) &
(notes['As at 31.03.2020'].notna()) &
(notes['As at 31.03.2019'].notna()) &
((notes['As at 31.03.2021']!=0) |
(notes['As at 31.03.2020']!=0) |
(notes['As at 31.03.2019']!=0))]
x1 = final_grouped.merge(notes_test, how = 'left', on = ['As at 31.03.2021','As at 31.03.2020','As at 31.03.2019'])
x1 = x1[x1['Note No_x'] != x1['Note No_y']]
z = x1[(x1['Note No_x'].notna()) |
(x1['Particulars_y'].notna())]
z = x1[(x1['Note No_x'].notna()) |
(x1['Particulars_y'].notna())]
z = z[['groups','major_group','Particulars_y','Note','Note Name','As at 31.03.2021','As at 31.03.2020','As at 31.03.2019','sheet_name']].drop_duplicates()
z['Note Name'] = z.groupby(['major_group'])['Note Name'].bfill()
z['Note Name'] = z.groupby(['major_group'])['Note Name'].ffill()
w = z[['Note Name','Particulars_y','As at 31.03.2021','As at 31.03.2020','As at 31.03.2019']].drop_duplicates().dropna()
q = notes.merge(w, how = 'left')
q = q[q['Particulars']!=q['Group Name']]
q = q[(q['Particulars_y'].isnull()) &
(q['Note No'] != 'TOTAL')]
combs = z[['groups','major_group','Note Name']].dropna().drop_duplicates()
final_grouped = final_grouped.merge(combs, how = 'left')
q = q.drop(['Group Name','Note No'],axis = 1)
q['Particulars_y'] = q['Particulars']
q['groups'] = q['Particulars']
q['major_group'] = q['Note Name']
q['sheet_name'] = np.nan
q = q.drop(['Particulars'],axis = 1)
z = z.append(q)
xyz = z[['Note','Note Name']].drop_duplicates().dropna().reset_index(drop = True)
z = z.drop('Note',axis = 1).merge(xyz, on = 'Note Name', how = 'left')
nulls = z[z['Particulars_y'].isnull()]
non_nulls = z[z['Particulars_y'].notna()]
non_nulls['Note'] = non_nulls['Note'].astype(int)
nulls = nulls[~nulls['major_group'].isin(non_nulls['major_group'].drop_duplicates().tolist())]
groups = non_nulls.sort_values('Note')['Note Name'].dropna().unique().tolist()
for group_name in groups:
abc = non_nulls[non_nulls['Note Name'] == group_name].drop_duplicates()
abc = abc[['Note Name','Particulars_y','major_group','Note','As at 31.03.2021','As at 31.03.2020','As at 31.03.2019']].drop_duplicates()
if len(group_name) > 30:
sheet_name = re.sub('[\(\[\)\]]', '', group_name).replace(' ','').replace('/','_')[0:30]
else:
sheet_name = group_name
abc.to_excel(writer, sheet_name = sheet_name,index = False)
workbook = writer.book
worksheet = writer.sheets[sheet_name]
row_idx, col_idx = abc.shape
for r in range(row_idx):
for c in range(col_idx):
worksheet.write(r + 3, c, abc.values[r, c], workbook.add_format({'border': 1, 'num_format': '0.00'}))
worksheet.set_column(0, col_idx, 12)
startrow = len(abc) + 5
abc = abc[['major_group','Particulars_y','Note','Note Name']]
final_grouped_merged = final_grouped.merge(abc, on = ['major_group','Note Name'])
#final_grouped_merged = final_grouped_merged[final_grouped_merged['Note No'] !='TOTAL'].drop('groups',axis = 1).drop_duplicates()
for sub_group in final_grouped_merged['Particulars_y'].unique().tolist():
test_sub = final_grouped_merged[final_grouped_merged['Particulars_y'] == sub_group]
test_sub = test_sub[['Particulars','Note No','As at 31.03.2021','As at 31.03.2020','As at 31.03.2019']]
test_sub.to_excel(writer, sheet_name = sheet_name,index = False, startrow = startrow)
startrow = startrow + len(test_sub) + 5
groups = nulls['sheet_name'].dropna().unique().tolist()
for group_name in groups:
abc = nulls[nulls['sheet_name'] == group_name].drop_duplicates()
abc = abc[['Note Name','Particulars_y','major_group','Note','As at 31.03.2021','As at 31.03.2020','As at 31.03.2019']].drop_duplicates()
abc.to_excel(writer, sheet_name = group_name,index = False)
startrow = len(abc) + 5
abc = abc[['major_group','Particulars_y']]
final_grouped_merged = final_grouped.merge(abc, on = ['major_group'])
#final_grouped_merged = final_grouped_merged[final_grouped_merged['Note No'] !='TOTAL'].drop('groups',axis = 1).drop_duplicates()
for sub_group in final_grouped_merged['major_group'].unique().tolist():
test_sub = final_grouped_merged[final_grouped_merged['major_group'] == sub_group]
test_sub = test_sub[['Particulars','Note No','As at 31.03.2021','As at 31.03.2020','As at 31.03.2019']]
test_sub.to_excel(writer, sheet_name = group_name,index = False, startrow = startrow)
startrow = startrow + len(test_sub) + 5
writer.save()