-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathkeyframe_extraction_example.py
106 lines (96 loc) · 4.32 KB
/
keyframe_extraction_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
from torch.nn import functional as F
import cv2
import math
from transformers import CLIPFeatureExtractor,CLIPVisionModel
import numpy as np
model_path = 'openai/clip-vit-large-patch14-336'
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_path)
vision_tower = CLIPVisionModel.from_pretrained(model_path).cuda()
vision_tower.requires_grad_(False)
def get_resized_wh(width, height, max_size):
if width > max_size or height > max_size:
if width > height:
new_width = max_size
new_height = int(height * (max_size / width))
else:
new_height = max_size
new_width = int(width * (max_size / height))
else:
new_width = width
new_height = height
return new_width, new_height
def check_pure(mtx):
unique_elements = np.unique(mtx)
return len(unique_elements) == 1
def extract_second(image_filename):
return image_filename.split('/')[-1].replace('.png', '').split('_')[-1]
def calculate_clip_feature_sim_2(image_1, image_2):
input_1 = feature_extractor(images=image_1, return_tensors="pt", padding=True)
input_2 = feature_extractor(images=image_2, return_tensors="pt", padding=True)
image_feature_1 = vision_tower(**input_1.to(device=vision_tower.device), output_hidden_states=True).hidden_states[-1][:, 0]
image_feature_2 = vision_tower(**input_2.to(device=vision_tower.device), output_hidden_states=True).hidden_states[-1][:, 0]
similarity = F.cosine_similarity(image_feature_1.to(device='cpu'), image_feature_2.to(device='cpu'), dim=1)
print(f'Sim: {similarity}')
return similarity
def frame_interval_file(video_path, keyframe_interval, shortest_duration, longest_duration, window_threshold, output_dir):
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
video_fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_interval = math.ceil(video_fps * keyframe_interval)
frame_list = []
cnt_tmp = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if cnt_tmp / video_fps > longest_duration:
break
if cnt_tmp == 0 and check_pure(frame) == True:
pure_cnt = 1
while pure_cnt < frame_interval:
ret, frame = cap.read()
if check_pure(frame) != True:
break
pure_cnt += 1
frame_list.append(frame)
cnt_tmp += 1
if len(frame_list) > math.ceil(video_fps * shortest_duration):
start_frame_idx = 0
selected_frame_list = [0]
if len(frame_list) > frame_interval:
for i in range(1, len(frame_list)):
if i % frame_interval == 0:
dynamic_sim = calculate_clip_feature_sim_2(frame_list[start_frame_idx], frame_list[i])
if dynamic_sim < window_threshold:
selected_frame_list.append(i)
start_frame_idx = i
if len(selected_frame_list) == 1:
selected_frame_list.append(len(frame_list)-1)
elif (len(frame_list)-selected_frame_list[-1]) >= frame_interval:
selected_frame_list.append(len(frame_list)-1)
for fc in selected_frame_list:
current_time = fc / video_fps
time_str = f"{current_time:04.2f}"
frame_filename = f"frame_{time_str}.png"
frame_filename = os.path.join(output_dir, frame_filename)
os.makedirs(output_dir, exist_ok=True)
new_width, new_height = get_resized_wh(width, height, 1024)
if new_width == width and new_height == height:
pass
else:
frame_list[fc] = cv2.resize(frame_list[fc], (new_width, new_height), interpolation=cv2.INTER_AREA)
suc = cv2.imwrite(frame_filename, frame_list[fc])
if not suc:
print(f"Failed to save frame {time_str} to {frame_filename}.")
cap.release()
if __name__=="__main__":
video_path = 'example.mp4'
keyframe_interval = 2
shortest_duration = 10
longest_duration = 120
window_threshold = 0.93
output_dir = 'example/'
# save keyframes to 'output_dir'
frame_interval_file(video_path, keyframe_interval, shortest_duration, longest_duration, window_threshold, output_dir)