-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathminiball.lisp
278 lines (262 loc) · 11.9 KB
/
miniball.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
;;;; Based on https://github.com/hbf/miniball by Kaspar Fisher
(in-package #:org.shirakumo.fraf.manifolds)
(defstruct (subspan (:constructor %make-subspan))
(vertices (make-array 0 :element-type 'single-float) :type vertex-array)
(membership (make-array 0 :element-type 'bit) :type simple-bit-vector)
(members (make-array 4 :element-type 'vertex :initial-element 0) :type (simple-array vertex (4)))
(q (meye (dmat3)) :type dmat3)
(r (dmat3) :type dmat3)
(u (dvec3) :type dvec3)
(w (dvec3) :type dvec3)
(rank 0 :type vertex)
(c 0d0 :type double-float)
(s 0d0 :type double-float))
(defmacro with-subspan ((subspan) &body body)
`(let ((vertices (subspan-vertices ,subspan))
(membership (subspan-membership ,subspan))
(members (subspan-members ,subspan))
(QQ (subspan-q ,subspan))
(RR (subspan-r ,subspan))
(u (subspan-u ,subspan))
(w (subspan-w ,subspan)))
(declare (ignorable vertices membership members QQ RR u w))
(symbol-macrolet ((r (subspan-rank ,subspan))
(c (subspan-c ,subspan))
(s (subspan-s ,subspan)))
(macrolet ((QQ (i j) `(mcref QQ ,i ,j))
(RR (i j) `(mcref RR ,i ,j))
(u (i) `(vref u ,i))
(w (i) `(vref w ,i)))
,@body))))
(defun make-subspan (vertices k &optional (subspan (%make-subspan)))
(let ((membership (make-array (truncate (length vertices) 3) :element-type 'bit :initial-element 0)))
(setf (sbitp membership k) T)
(setf (aref (subspan-members subspan) 0) k)
(setf (subspan-vertices subspan) vertices)
(setf (subspan-membership subspan) membership)
subspan))
(declaim (inline subspan-origin subspan-any subspan-member-p subspan-size subspan-givens))
(defun subspan-origin (subspan &optional (out (dvec3)))
(the dvec3 (v (subspan-vertices subspan)
(aref (subspan-members subspan) (subspan-rank subspan))
out)))
(defun subspan-any (subspan &optional (out (dvec3)))
(the dvec3 (v (subspan-vertices subspan)
(aref (subspan-members subspan) (subspan-rank subspan))
out)))
(defun subspan-member-p (subspan vertex)
(sbitp (subspan-membership subspan) vertex))
(defun subspan-size (subspan)
(1+ (subspan-rank subspan)))
(defun subspan-givens (subspan a b)
(declare (type double-float a b))
(declare (optimize speed (safety 1)))
(with-subspan (subspan)
(cond ((= 0 b)
(setf c 1d0)
(setf s 0d0))
((< (abs a) (abs b))
(let ((tt (/ a b)))
(setf s (/ (sqrt (1+ (* tt tt)))))
(setf c (* s tt))))
(T
(let ((tt (/ b a)))
(setf c (/ (sqrt (1+ (* tt tt)))))
(setf s (* c tt)))))))
(defun subspan-append-column (subspan)
(declare (optimize speed (safety 1)))
(with-subspan (subspan)
(dotimes (i 3)
(setf (RR r i) 0d0)
(dotimes (k 3)
(incf (RR r i) (* (QQ i k) (u k)))))
(loop for j downfrom (1- 3) above r
do (subspan-givens subspan (RR r (1- j)) (RR r j))
(setf (RR r (1- j)) (+ (* c (RR r (1- j))) (* s (RR r j))))
(loop for i from 0 below 3
for a = (QQ (1- j) i)
for b = (QQ j i)
do (setf (QQ (1- j) i) (+ (* c a) (* s b)))
(setf (QQ j i) (- (* c b) (* s a)))))))
(defun subspan-add (subspan vertex)
(declare (optimize speed (safety 1)))
(with-subspan (subspan)
(!v- u (v vertices vertex u) (subspan-origin subspan))
(subspan-append-column subspan)
(setf (sbitp membership vertex) T)
(setf (aref members (1+ r)) (aref members r))
(setf (aref members r) vertex)
(incf r)))
(defun subspan-shortest-vector-to-span (subspan p w)
(declare (type dvec3 p w))
(declare (optimize speed (safety 1)))
(let ((QQ (subspan-q subspan)))
(!v- w (subspan-origin subspan w) p)
(dotimes (j (subspan-rank subspan) (vsqrlength w))
(let ((scale 0d0))
(declare (type double-float scale))
(dotimes (i 3)
(incf scale (* (vref w i) (mcref QQ j i))))
(dotimes (i 3)
(decf (vref w i) (* scale (mcref QQ j i))))))))
(defun subspan-find-affine-coefficients (subspan center lambdas)
(declare (type dvec3 center))
(declare (type (simple-array double-float (4)) lambdas))
(declare (optimize speed (safety 1)))
(with-subspan (subspan)
(!v- u center (subspan-origin subspan u))
(dotimes (i 3)
(setf (w i) 0d0)
(dotimes (k 3)
(incf (w i) (* (QQ i k) (u k)))))
(let ((origin-lambda 1d0))
(declare (type double-float origin-lambda))
(loop for j downfrom (1- r) to 0
do (loop for k from (1+ j) below r
do (decf (w j) (* (aref lambdas k) (RR k j))))
(when (/= 0 (RR j j))
;; KLUDGE: Can get div by zero here, not sure what to do about it.
(let ((lj (/ (w j) (RR j j))))
(setf (aref lambdas j) lj)
(decf origin-lambda lj))))
(setf (aref lambdas r) origin-lambda)
NIL)))
(defun subspan-hessenberg-clear (subspan pos)
(declare (type vertex pos))
(declare (optimize speed (safety 1)))
(with-subspan (subspan)
(loop while (< pos r)
do (subspan-givens subspan (RR pos pos) (RR pos (1+ pos)))
(setf (RR pos pos) (+ (* c (RR pos pos)) (* s (RR pos (1+ pos)))))
(loop for j from (1+ pos) below r
for a = (RR j pos)
for b = (RR j (1+ pos))
do (setf (RR j pos) (+ (* c a) (* s b)))
(setf (RR j (1+ pos)) (- (* c b) (* s a))))
(loop for i from 0 below 3
for a = (QQ pos i)
for b = (QQ (1+ pos) i)
do (setf (QQ pos i) (+ (* c a) (* s b)))
(setf (QQ (1+ pos) i) (- (* c b) (* s a))))
(incf pos))))
(defun subspan-special-rank-1-update (subspan)
(declare (optimize speed (safety 1)))
(with-subspan (subspan)
(dotimes (i 3)
(setf (w i) 0d0)
(dotimes (k 3)
(incf (w i) (* (qq i k) (u k)))))
(loop for k downfrom 2 above 0
do (subspan-givens subspan (w (1- k)) (w k))
(setf (w (1- k)) (+ (* c (w (1- k))) (* s (w k))))
(setf (RR (1- k) k) (* (- s) (RR (1- k) (1- k))))
(setf (RR (1- k) (1- k)) (* c (RR (1- k) (1- k))))
(loop for j from k below r
for a = (RR j (1- k))
for b = (RR j k)
do (setf (RR j (1- k)) (+ (* c a) (* s b)))
(setf (RR j k) (- (* c b) (* s a))))
(loop for i from 0 below 3
for a = (qq (1- k) i)
for b = (qq k i)
do (setf (qq (1- k) i) (+ (* c a) (* s b)))
(setf (qq k i) (- (* c b) (* s a)))))
(dotimes (j r)
(incf (RR j 0) (w 0)))
(subspan-hessenberg-clear subspan 0)))
(defun subspan-remove (subspan vertex)
(declare (type vertex vertex))
(declare (optimize speed (safety 1)))
(with-subspan (subspan)
(setf (sbitp membership (aref members vertex)) NIL)
(cond ((= vertex r)
(!v- u (subspan-origin subspan) (v vertices (aref members (1- r)) u))
(decf r)
(subspan-special-rank-1-update subspan))
(T
(let ((dummy (mcol RR vertex)))
(declare (type (simple-array double-float (3)) dummy))
(loop for j from (1+ vertex) below r
do (setf (mcol RR (1- j)) (mcol RR j))
(setf (aref members (1- j)) (aref members j)))
(setf (aref members (1- r)) (aref members r))
(setf (mcol RR (decf r)) dummy))
(subspan-hessenberg-clear subspan vertex)))))
(defun bounding-sphere (vertices)
(declare (optimize speed (safety 1)))
(check-type vertices vertex-array)
(flet ((emit (center radius)
(if (eql (array-element-type vertices) 'single-float)
(values (vec3 center) (float radius 0f0))
(values center radius))))
(if (= 0 (length vertices))
(emit (dvec3) 0d0)
(let ((center (dvec3))
(tmp (dvec3))
(squared-radius 0d0)
(farthest 0))
(v vertices 0 center)
(loop for i from 1 below (truncate (length vertices) 3)
for dist = (vsqrdistance center (v vertices i tmp))
do (when (<= squared-radius dist)
(setf squared-radius dist)
(setf farthest i)))
;; Actual miniball update loop
(let ((subspan (make-subspan vertices farthest))
(radius (sqrt squared-radius))
(center-to-aff (dvec3))
(center-to-point (dvec3))
(lambdas (make-array 4 :element-type 'double-float :initial-element 0d0))
(dist-to-aff 0d0)
(dist-to-aff-square 0d0)
(eps 1d-12))
(declare (type double-float dist-to-aff dist-to-aff-square eps))
(declare (dynamic-extent subspan center-to-aff center-to-point lambdas))
(flet ((update-radius ()
(setf squared-radius (vsqrdistance (subspan-any subspan tmp) center))
(setf radius (sqrt (the (double-float 0d0) squared-radius))))
(compute-dist-to-aff ()
(setf dist-to-aff-square (subspan-shortest-vector-to-span subspan center center-to-aff))
(setf dist-to-aff (sqrt (the (double-float 0d0) dist-to-aff-square))))
(find-stop-fraction ()
(let ((scale 1d0) stopper)
(dotimes (j (truncate (length vertices) 3) (values scale stopper))
(unless (subspan-member-p subspan j)
(!v- center-to-point (v vertices j tmp) center)
(let ((dir-point-prod (v. center-to-aff center-to-point)))
(unless (< (- dist-to-aff-square dir-point-prod) (* eps radius dist-to-aff))
(let ((a (- squared-radius (vsqrlength center-to-point)))
(b (* 2 (- dist-to-aff-square dir-point-prod))))
(when (< 0 b)
(let ((bound (/ a b)))
(when (< 0 bound scale)
(setf scale bound)
(setf stopper j)))))))))))
(successful-drop ()
(subspan-find-affine-coefficients subspan center lambdas)
(let ((smallest 0)
(minimum 1d0))
(dotimes (i (subspan-size subspan))
(when (< (aref lambdas i) minimum)
(setf minimum (aref lambdas i))
(setf smallest i)))
(when (<= minimum 0)
(subspan-remove subspan smallest)
T))))
(loop (compute-dist-to-aff)
(loop while (<= dist-to-aff (* eps radius))
do (unless (successful-drop)
(return))
(compute-dist-to-aff))
(multiple-value-bind (scale stopper) (find-stop-fraction)
(declare (type double-float scale))
(cond (stopper
(nv+* center center-to-aff scale)
(update-radius)
(subspan-add subspan stopper))
(T
(nv+ center center-to-aff)
(update-radius)
(unless (successful-drop)
(return)))))))
(emit center radius))))))