-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathT_fun.v
667 lines (453 loc) · 17.6 KB
/
T_fun.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
(** ** The functions of the over-towers defined by T and their iterations.
by Vladimir Voevodsky, started on Jan. 22, 2015 *)
Unset Automatic Introduction.
Require Export lBsystems.T_Tt .
(** *** The definition of an extended operation T and its elementary properties. *)
Definition T_ext_dom { BB : lBsystem_carrier } ( X1 X2 : BB ) :=
dirprod ( ll X1 > 0 ) ( isover X2 ( ft X1 ) ) .
Definition T_ext_dom_constr { BB : lBsystem_carrier } { X1 X2 : BB }
( gt0 : ll X1 > 0 ) ( isov : isover X2 ( ft X1 ) ) : T_ext_dom X1 X2 :=
dirprodpair gt0 isov .
Definition T_ext_dom_gt0 { BB : lBsystem_carrier } { X1 X2 : BB } ( inn : T_ext_dom X1 X2 ) :=
pr1 inn .
Definition T_ext_dom_isov { BB : lBsystem_carrier } { X1 X2 : BB } ( inn : T_ext_dom X1 X2 ) :=
pr2 inn .
Definition T_dom_to_T_ext_dom { BB : lBsystem_carrier } { X1 X2 : BB } ( inn : T_dom X1 X2 ) :
T_ext_dom X1 X2 := T_ext_dom_constr ( T_dom_gt0 inn ) ( T_dom_isabove inn ) .
Coercion T_dom_to_T_ext_dom : T_dom >-> T_ext_dom .
Definition T_dom_to_T_ext_dom_ft { BB : lBsystem_carrier } { X1 X2 : BB } ( inn : T_dom X1 X2 ) :
T_ext_dom X1 ( ft X2 ) := T_ext_dom_constr ( T_dom_gt0 inn ) ( isover_ft' ( T_dom_isabove inn ) ) .
Definition T_ext { BB : lBsystem_carrier } ( T : T_ops_type BB )
{ X1 X2 : BB } ( inn : T_ext_dom X1 X2 ) : BB .
Proof .
intros. set ( gt0 := pr1 inn ) . set ( isov := pr2 inn ) .
destruct ( ovab_choice isov ) as [ isab | eq ] .
exact ( T _ _ ( dirprodpair gt0 isab ) ) .
exact X1 .
Defined.
Lemma isover_T_ext { BB : lBsystem_carrier }
( T : T_ops_type BB ) ( ax1b : T_ax1b_type T )
{ X1 X2 : BB } ( inn : T_ext_dom X1 X2 ) :
isover ( T_ext T inn ) X1 .
Proof .
intros .
unfold T_ext .
destruct ( ovab_choice (pr2 inn) ) as [ isab | eq ] .
exact ( ax1b _ _ _ ) .
exact ( isover_XX _ ) .
Defined.
Lemma isover_T_ext_T_ext_2 { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
{ X1 X2 X2' : BB } ( inn : T_ext_dom X1 X2 ) ( inn' : T_ext_dom X1 X2' )
( is : isover X2 X2' ) : isover ( T_ext T inn ) ( T_ext T inn' ) .
Proof .
intros . unfold T_ext .
destruct ( ovab_choice (pr2 inn) ) as [ isab | eq ] .
destruct ( ovab_choice (pr2 inn') ) as [ isab' | eq' ] .
apply ( isover_T_T_2 ax0 ax1a _ _ is ) .
exact ( ax1b _ _ _ ) .
destruct ( ovab_choice (pr2 inn') ) as [ isab' | eq' ] .
assert ( absd : empty ) .
rewrite eq in is .
assert ( ge := isover_geh is ) .
assert ( gt := isabove_gth isab' ) .
exact ( ge gt ) .
destruct absd .
exact ( isover_XX _ ) .
Defined.
(** *** The function T_fun of the over-towers defined by the extended operation T *)
Definition T_fun_int { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax1b : T_ax1b_type T )
{ X1 : BB } ( gt0 : ll X1 > 0 ) ( X2' : ltower_over ( ft X1 ) ) : ltower_over X1 .
Proof .
intros .
set ( X2 := pr1 X2' ) . set ( isov := pr2 X2' : isover X2 ( ft X1 ) ) .
split with ( T_ext T ( dirprodpair gt0 isov ) ) .
apply ( isover_T_ext T ax1b ) .
Defined.
Lemma isovmonot_T_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
{ X1 : BB } ( gt0 : ll X1 > 0 )
( X3' X2' : ltower_over ( ft X1 ) ) ( isov : isover X3' X2' ) :
isover ( T_fun_int ax1b gt0 X3' ) ( T_fun_int ax1b gt0 X2' ) .
Proof .
intros .
apply isinvovmonot_pocto .
unfold T_fun_int. simpl .
apply ( isover_T_ext_T_ext_2 ax0 ax1a ax1b ) .
apply isovmonot_pocto .
exact isov .
Defined.
Opaque isovmonot_T_fun .
Lemma ll_T_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
{ X1 : BB } ( gt0 : ll X1 > 0 ) ( X2' : ltower_over ( ft X1 ) ) :
ll ( T_fun_int ax1b gt0 X2' ) = ll X2' .
Proof.
intros.
change _ with ( ll ( T_ext T ( dirprodpair gt0 ( pr2 X2' ) ) ) - ll X1 = ll X2' ) .
change ( ll X2' ) with ( ll ( pr1 X2' ) - ll ( ft X1 ) ) .
unfold T_ext .
destruct (ovab_choice (pr2 (dirprodpair gt0 (pr2 X2')))) as [ isab | eq ] .
rewrite ax0 .
rewrite ll_ft .
assert ( ge : ll (pr1 X2') >= ll X1 ) .
apply natgthminus1togeh .
rewrite <- ll_ft .
apply ( isabove_gth isab ) .
rewrite <- natassocmpeq .
rewrite ( natpluscomm _ 1 ) .
apply natassocpmeq .
apply ge .
apply ge .
apply ( @natgthminus1togeh 1 _ gt0 ) .
rewrite natminusnn .
rewrite eq .
rewrite natminusnn .
apply idpath .
Defined.
Opaque ll_T_fun .
Lemma isllmonot_T_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
{ X1 : BB } ( gt0 : ll X1 > 0 ) : isllmonot ( T_fun_int ax1b gt0 ) .
Proof.
intros. unfold isllmonot .
intros X Y .
repeat rewrite ( ll_T_fun ax0 ) .
apply idpath .
Defined.
Opaque isllmonot_T_fun .
Lemma isbased_T_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
{ X1 : BB } ( gt0 : ll X1 > 0 ) : isbased ( T_fun_int ax1b gt0 ) .
Proof.
intros. unfold isbased. intros X eq0 .
rewrite ll_T_fun .
exact eq0.
exact ax0.
Defined.
Opaque isbased_T_fun.
Definition T_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
{ X1 : BB } ( gt0 : ll X1 > 0 ) :
ltower_fun ( ltower_over ( ft X1 ) ) ( ltower_over X1 ) :=
ltower_fun_constr ( isovmonot_T_fun ax0 ax1a ax1b gt0 )
( isllmonot_T_fun ax0 ax1b gt0 )
( isbased_T_fun ax0 ax1b gt0 ) .
(** *** Definition of Tj_fun as iterations of the functions T_fun *)
(** **** Construction of Tj *)
(** The construction of a function requires only an operation of type T_ops_type satisfying a consition
of type T_ax1b_type but the proof that it is an ltower function requires other two properties of this
operation. *)
Definition Tj_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
{ A X1 : BB } ( isov : isover X1 A ) :
ltower_fun ( ltower_over A ) ( ltower_over X1 ) :=
isover_ind ( fun ( X Y : BB ) => ltower_fun ( ltower_over Y ) ( ltower_over X ) )
( fun X => ltower_idfun _ )
( fun X gt0 => T_fun ax0 ax1a ax1b gt0 )
( fun X Y f g => ltower_funcomp g f ) _ _ isov .
Lemma Tj_fun_compt { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
{ X Y : BB } ( isab : isabove X Y ) :
Tj_fun ax0 ax1a ax1b isab =
ltower_funcomp ( Tj_fun ax0 ax1a ax1b ( isover_ft' isab ) )
( T_fun ax0 ax1a ax1b ( isabove_gt0 isab ) ) .
Proof.
intros.
unfold Tj_fun .
rewrite (@isover_ind_isab BB _ _ _ _ _ _ ).
apply idpath .
Defined.
(*
Lemma Tj_fun_compt0 { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
{ X : BB } ( isov : isover X Y ) :
Tj_fun ax0 ax1a ax1b isab =
Lemma Tj_fun_int_l0 { BB : lBsystem_carrier }
{ A X1 : BB } ( isov : isover X1 A )
( ell : ll X1 - ll A = 0 ) : X1 = A .
Proof .
intros .
destruct ( ovab_choice isov ) as [ isab | eq ] .
assert ( absd : empty ) .
assert ( gt := isabove_gth isab ) .
assert ( gt0 := minusgth0 _ _ gt ) .
rewrite ell in gt0 .
exact ( negnatgthnn _ gt0 ) .
destruct absd .
exact eq .
Defined.
Lemma Tj_fun_int_l1 { BB : lBsystem_carrier }
( j : nat )
{ A X1 : BB } ( isov : isover X1 A )
( ell : ll X1 - ll A = S j ) :
isover ( ft X1 ) A .
Proof .
intros .
assert ( gth : ll X1 > ll A ) .
apply minusgth0inv .
rewrite ell .
exact ( natgthsn0 _ ) .
exact ( isover_ft' ( isabove_constr gth isov ) ) .
Defined.
Opaque Tj_fun_int_l1 .
Lemma Tj_fun_int_l2 { BB : lBsystem_carrier }
( j : nat )
{ A X1 : BB } ( isov : isover X1 A )
( ell : ll X1 - ll A = S j ) :
ll ( ft X1 ) - ll A = j .
Proof .
intros .
rewrite ll_ft .
rewrite natminuscomm .
rewrite ell .
simpl .
exact ( natminuseqn _ ) .
Defined.
Opaque Tj_fun_int_l2 .
Lemma Tj_fun_int_l3 { BB : lBsystem_carrier }
( j : nat )
{ A X1 : BB }
( ell : ll X1 - ll A = S j ) : ll X1 > 0 .
Proof .
intros .
refine ( natgehgthtrans _ ( ll X1 - ll A ) _ ( natminuslehn _ _ ) _ ) .
rewrite ell .
exact ( natgthsn0 _ ) .
Defined.
Opaque Tj_fun_int_l3 .
Definition Tj_fun_int { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax1b : T_ax1b_type T )
{ A : BB }
( j : nat )
{ X1 : BB } ( isov : isover X1 A )
( ell : ll X1 - ll A = j )
( X2' : ltower_over A ) : ltower_over X1 .
Proof .
intros until j . induction j as [ | j IHj ] .
intros .
assert ( eq := Tj_fun_int_l0 isov ell ) .
split with ( pr1 X2' ) .
rewrite eq .
exact ( pr2 X2' ) .
intros .
assert ( Tprev := IHj ( ft X1 ) ( Tj_fun_int_l1 j isov ell ) ( Tj_fun_int_l2 j isov ell ) X2' ) .
exact ( T_fun ax1b ( Tj_fun_int_l3 j ell ) Tprev ) .
Defined.
Definition Tj_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax1b : T_ax1b_type T )
{ A X1 : BB } ( isov : isover X1 A ) : ltower_over A -> ltower_over X1 :=
fun X2' => Tj_fun_int ax1b ( ll X1 - ll A ) isov ( idpath _ ) X2' .
(** **** Proof of monotonicity of Tj relative to the predicate isover *)
Lemma isovmonot_Tj_fun_int { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
{ A : BB }
( j : nat )
{ X1 : BB } ( isov : isover X1 A )
( ell : ll X1 - ll A = j )
( X2' X3' : ltower_over A ) ( isov' : isover X3' X2' ) :
isover ( Tj_fun_int ax1b j isov ell X3' ) ( Tj_fun_int ax1b j isov ell X2' ) .
Proof .
intros until j . induction j as [ | j IHj ] .
intros .
assert ( eq := Tj_fun_int_l0 isov ell ) .
unfold Tj_fun_int .
simpl .
apply isinvovmonot_pocto .
simpl .
apply isovmonot_pocto .
exact isov' .
intros .
simpl .
unfold T_fun .
apply isinvovmonot_pocto .
simpl .
apply ( isover_T_ext_T_ext_2 ax0 ax1a ax1b ) .
apply isovmonot_pocto .
apply IHj .
exact isov' .
Defined.
Lemma isovmonot_Tj_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
{ X1 A : BB } ( isov : isover X1 A )
( X2' X3' : ltower_over A ) ( isov' : isover X2' X3' ) :
isover ( Tj_fun ax1b isov X2' ) ( Tj_fun ax1b isov X3' ) .
Proof .
intros .
apply ( isovmonot_Tj_fun_int ax0 ax1a ax1b ) .
exact isov' .
Defined.
(** **** Functions Tj and the length function ll *)
Lemma ll_Tj_fun_int { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
{ A : BB }
( j : nat )
{ X1 : BB } ( isov : isover X1 A )
( ell : ll X1 - ll A = j )
( X2' : ltower_over A ) :
ll ( Tj_fun_int ax1b j isov ell X2' ) = ll X2' .
Proof .
intros BB T ax0 ax1b A j .
induction j as [ | j IHj ] . intros .
simpl .
change _ with ( ll ( pr1 X2' ) - ll X1 = ll ( pr1 X2' ) - ll A ) .
assert ( eq : ll X1 = ll A ) . apply natminusmequalsn .
apply ( isover_geh isov ) .
apply ell .
rewrite eq . apply idpath .
simpl .
intros . rewrite ll_T_fun .
apply IHj .
apply ax0 .
Defined.
Lemma ll_Tj_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
{ A X1 : BB } ( isov : isover X1 A )
( X2' : ltower_over A ) :
ll ( Tj_fun ax1b isov X2' ) = ll X2' .
Proof.
intros.
apply ll_Tj_fun_int .
apply ax0 .
Defined.
Lemma isllmonot_Tj_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
{ A X1 : BB } ( isov : isover X1 A ) : isllmonot ( Tj_fun ax1b isov ) .
Proof.
intros .
unfold isllmonot .
intros X Y .
repeat rewrite ll_Tj_fun .
apply idpath .
apply ax0.
apply ax0.
Defined.
Lemma isbased_Tj_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
{ A X1 : BB } ( isov : isover X1 A ) : isbased ( Tj_fun ax1b isov ) .
Proof.
intros. unfold isbased. intros X eq0 .
rewrite ll_Tj_fun .
exact eq0.
exact ax0.
Defined.
Definition ltower_Tj_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
{ A X1 : BB } ( isov : isover X1 A ) :
ltower_fun ( ltower_over A ) ( ltower_over X1 ) :=
ltower_fun_constr ( isovmonot_Tj_fun ax0 ax1a ax1b isov )
( isllmonot_Tj_fun ax0 ax1b isov )
( isbased_Tj_fun ax0 ax1b isov ) .
(** *** Function Tt_fun *)
(* Definition Tt_fun { BB : lBsystem_carrier }
( T : T_ops_type BB ) ( Tt : Tt_ops_type BB )
( X : BB ) : *)
*)
(** *** Function Tprod for pointed l-Bsystems *)
Definition Tprod_fun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
( X1 : BB ) :
ltower_fun BB ( ltower_over X1 ) :=
ltower_funcomp ( @ltower_fun_to_ltower_over BB )
( Tj_fun ax0 ax1a ax1b ( isoverll0 ( ll_cntr BB ) X1 ) ) .
(* Definition Tprod { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
( X Y : BB ) : BB := pocto ( Tprod_fun ax0 ax1a ax1b X Y ) .
Definition isover_Tprod { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
( X Y : BB ) : isover ( Tprod ax0 ax1a ax1b X Y ) X :=
pr2 ( Tprod_fun ax0 ax1a ax1b X Y ) . *)
Lemma Tprod_compt { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
( X Y : BB ) ( gt0 : ll X > 0 ) :
Tprod_fun ax0 ax1a ax1b X Y = T_fun ax0 ax1a ax1b gt0 ( Tprod_fun ax0 ax1a ax1b ( ft X ) Y ) .
Proof.
intros.
simpl .
unfold funcomp .
simpl .
assert ( gt : ll X > ll ( cntr BB ) ) . rewrite (@ll_cntr BB). apply gt0 .
set ( isab := dirprodpair gt (isoverll0 (ll_cntr BB) X) : isabove X ( cntr BB ) ) .
change (isoverll0 (ll_cntr BB) X) with ( isabove_to_isover isab ) .
rewrite Tj_fun_compt .
simpl .
assert ( int : (isover_ft' isab) = (isoverll0 (ll_cntr BB) (ft X)) ) . apply proofirrelevance .
apply isaprop_isover .
rewrite int .
assert ( int' : gt0 = (isabove_gt0 isab) ) .
apply proofirrelevance . apply ( pr2 ( _ > _ ) ) .
rewrite int' . apply idpath .
Defined.
(*
Proof .
intros .
set ( X2' := @to_ltower_over BB X2 ) .
exact ( Tj_fun ax0 ax1a ax1b ( isoverll0 ( ll_cntr BB ) X1 ) X2' ) .
Defined.
Lemma isovmonot_Tprod { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
( X1 : BB ) : isovmonot ( Tprod ax1b X1 ) .
Proof .
intros .
unfold isovmonot .
intros X Y isov .
set ( X' := @to_ltower_over BB X ) . set ( Y' := @to_ltower_over BB Y ) .
set ( isov' := isovmonot_to_ltower_over isov ) .
exact ( isovmonot_Tj_fun ax0 ax1a ax1b ( isoverll0 ( ll_cntr BB ) X1 ) X' Y' isov' ) .
Defined.
Definition Tprod_ovmonotfun { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
( X1 : BB ) : ovmonot_fun BB ( ltower_over X1 ) :=
ovmonot_fun_constr ( Tprod ax1b X1 ) ( isovmonot_Tprod ax0 ax1a ax1b X1 ) .
Lemma ll_Tprod { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
( X1 : BB ) ( X2 : BB ) : ll ( Tprod ax1b X1 X2 ) = ll X2 .
Proof .
intros .
unfold Tprod .
rewrite ll_Tj_fun .
rewrite (@ll_to_ltower_over BB).
apply idpath .
apply ax0 .
Defined.
Lemma isllmonot_Tprod { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
( X1 : BB ) : isllmonot ( Tprod ax1b X1 ) .
Proof .
intros . unfold isllmonot . intros X Y .
repeat rewrite ll_Tprod . apply idpath .
apply ax0 .
apply ax0 .
Defined.
Lemma isbased_Tprod { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
( X1 : BB ) : isbased ( Tprod ax1b X1 ) .
Proof.
intros. unfold isbased . intros X eq0 .
rewrite ll_Tprod .
exact eq0.
exact ax0.
Defined.
Definition ltower_fun_Tprod { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1a : T_ax1a_type T ) ( ax1b : T_ax1b_type T )
( X1 : BB ) :
ltower_fun BB ( ltower_over X1 ) :=
ltower_fun_constr ( isovmonot_Tprod ax0 ax1a ax1b X1 )
( isllmonot_Tprod ax0 ax1b X1 )
( isbased_Tprod ax0 ax1b X1 ) .
(*
Definition isabove_Tj { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
{ A X1 X2 : BB } ( isov : isover X1 A ) ( isab : isabove X2 A ) :
isabove ( Tj ax0 ax1b isov isab ) X1 :=
pr1 ( pr2 ( Tj_int_package ax0 ax1b ( ll X1 - ll A ) isov ( idpath _ ) isab ) ) .
Opaque isabove_Tj .
Definition ll_Tj { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( ax0 : T_ax0_type T ) ( ax1b : T_ax1b_type T )
{ A X1 X2 : BB } ( isov : isover X1 A ) ( isab : isabove X2 A ) :
ll ( Tj ax0 ax1b isov isab ) = ll X2 - ll A + ll X1 :=
pr2 ( pr2 ( Tj_int_package ax0 ax1b ( ll X1 - ll A ) isov ( idpath _ ) isab ) ) .
*)
*)
(* End of the file lBsystems_T_fun_Tj_Ttj.v *)