-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_env_allfields.py
executable file
·237 lines (206 loc) · 11.1 KB
/
compute_env_allfields.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/env python
from netCDF4 import Dataset
import numpy as np
from datetime import *
import time, os, sys
import scipy.ndimage as ndimage
import pickle as pickle
import multiprocessing
from scipy import spatial
from mpl_toolkits.basemap import *
import scipy.ndimage.filters
from scipy.interpolate import griddata, RectBivariateSpline
import matplotlib.colors as colors
import matplotlib.pyplot as plt
### THIS CODE EVOLVED FROM CODE WITHIN /glade/u/home/sobash/NSC_scripts
### TO UPSCALE 3-KM CAM DATA TO AN 80-KM GRID
def readNCLcm(name):
'''Read in NCL colormap for use in matplotlib'''
import os
rgb, appending = [], False
rgb_dir_ys = '/glade/apps/opt/ncl/6.2.0/intel/12.1.5/lib/ncarg/colormaps'
rgb_dir_ch = '/glade/u/apps/ch/opt/ncl/6.4.0/intel/16.0.3/lib/ncarg/colormaps'
if os.path.isdir(rgb_dir_ys): fh = open('%s/%s.rgb'%(rgb_dir_ys,name), 'r')
else: fh = open('%s/%s.rgb'%(rgb_dir_ch,name), 'r')
for line in fh.read().splitlines():
if appending: rgb.append(map(float,line.split()))
if ''.join(line.split()) in ['#rgb',';RGB']: appending = True
maxrgb = max([ x for y in rgb for x in y ])
if maxrgb > 1: rgb = [ [ x/255.0 for x in a ] for a in rgb ]
return rgb
def upscale(field, type='mean', maxsize=27):
if model in ['NSC3km', 'NSC3km-12sec', 'GEFS']: kernel = np.ones((26,26)) #should this be 27?
elif model in ['NSC1km']: kernel = np.ones((81,81))
weights = kernel / float(kernel.size)
if type == 'mean':
#field = scipy.ndimage.filters.convolve(field, weights=weights, mode='constant', cval=0.0)
field = scipy.ndimage.filters.uniform_filter(field, size=maxsize, mode='constant', cval=0.0)
elif type == 'max':
field = scipy.ndimage.filters.maximum_filter(field, size=maxsize)
field_interp = field.flatten()[nngridpts[1]].reshape((65,93))
return field_interp
# INTERPOLATE NARR TO 80KM GRID
#fig, axes, m = pickle.load(open('/glade/u/home/wrfrt/rt_ensemble_2018wwe/python_scripts/rt2015_CONUS.pk', 'r'))
awips = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution='l', area_thresh=10000.)
grid81 = awips.makegrid(93, 65, returnxy=True)
x81, y81 = awips(grid81[0], grid81[1])
#x81 = (x[1:,1:] + x[:-1,:-1])/2.0
#y81 = (y[1:,1:] + y[:-1,:-1])/2.0
mask = pickle.load(open('/glade/u/home/sobash/2013RT/usamask.pk', 'rb'))
mask = np.logical_not(mask)
mask = mask.reshape((65,93))
sdate = datetime.strptime(sys.argv[1], '%Y%m%d%H')
edate = sdate + timedelta(hours=24)
tdate = sdate
model = 'NSC3km-12sec'
#model = 'NSC1km'
#model = sys.argv[2]
#mem = int(sys.argv[3])
if model == 'NSC1km': f = Dataset('/glade/p/mmm/parc/sobash/NSC/1KM_WRF_POST/2011062500/diags_d01_2011-06-25_00_00_00.nc', 'r')
if model == 'NSC3km-12sec': f = Dataset('/glade/p/mmm/parc/sobash/NSC/3KM_WRF_POST_12sec_ts/2011062500/diags_d01_2011-06-25_00_00_00.nc', 'r')
if model == 'GEFS': f = Dataset('/glade/scratch/sobash/ncar_ens/gefs_ics/2017042500/wrf_rundir/ens_1/diags_d02.2017-04-25_00:00:00.nc', 'r')
lats = f.variables['XLAT'][0,:]
lons = f.variables['XLONG'][0,:]
f.close()
# find closest 3-km or 1-km grid point to each 80-km grid point
print('finding closest grid points')
gpfname = 'data/nngridpts_80km_%s'%model
if os.path.exists(gpfname):
nngridpts = pickle.load(open(gpfname, 'rb'))
else:
xy = awips(lons.ravel(), lats.ravel())
tree = spatial.KDTree(list(zip(xy[0].ravel(),xy[1].ravel())))
nngridpts = tree.query(list(zip(x81.ravel(),y81.ravel())))
pickle.dump(nngridpts, open(gpfname, 'wb'))
upscaled_fields = { 'UP_HELI_MAX':[], 'UP_HELI_MAX03':[], 'UP_HELI_MAX01':[], 'W_UP_MAX':[], 'W_DN_MAX':[], 'WSPD10MAX':[], 'STP':[], 'LR75':[], 'CAPESHEAR':[],
'MUCAPE':[], 'SBCAPE':[], 'SBCINH':[], 'MLCINH':[], 'MLLCL':[], 'SHR06': [], 'SHR01':[], 'SRH01':[], 'SRH03':[], 'T2':[], 'TD2':[], 'PSFC':[], 'PREC_ACC_NC':[], \
'HAILCAST_DIAM_MAX':[], \
'T925':[], 'T850':[], 'T700':[], 'T500':[], 'TD925':[], 'TD850':[], 'TD700':[], 'TD500':[], 'U925':[], 'U850':[], 'U700':[], 'U500':[], 'V925':[], 'V850':[], 'V700':[], 'V500':[], \
'UP_HELI_MAX80':[], 'UP_HELI_MAX120':[], 'UP_HELI_MAX01-120':[] }
press_levels = [1000,925,850,700,600,500,400,300,250,200,150,100]
for fhr in range(37):
yyyy = tdate.strftime('%Y')
yyyymmddhh = tdate.strftime('%Y%m%d%H')
yymmdd = tdate.strftime('%y%m%d')
print(time.ctime(time.time()), 'reading', yyyymmddhh, fhr)
### read in NSSL dataset for this day
try:
wrfvalidstr = (tdate + timedelta(hours=fhr)).strftime('%Y-%m-%d_%H_%M_%S')
wrfvalidstr2 = (tdate + timedelta(hours=fhr)).strftime('%Y-%m-%d_%H:%M:%S')
if model == 'NSC3km-12sec': wrffile = "/glade/p/mmm/parc/sobash/NSC/3KM_WRF_POST_12sec_ts/%s/diags_d01_%s.nc"%(yyyymmddhh,wrfvalidstr)
if model == 'NSC1km': wrffile = "/glade/p/mmm/parc/sobash/NSC/1KM_WRF_POST/%s/diags_d01_%s.nc"%(yyyymmddhh,wrfvalidstr)
if model == 'GEFS': wrffile = "/glade/scratch/sobash/ncar_ens/gefs_ics/%s/wrf_rundir/ens_%d/diags_d02.%s.nc"%(yyyymmddhh,mem,wrfvalidstr2)
fh = Dataset(wrffile)
# populate dictionary of upscaled fields
for f in upscaled_fields.keys():
#print(time.ctime(time.time()), f)
if f == 'SHR06':
this_field1 = fh.variables['USHR6'][0,:]
this_field2 = fh.variables['VSHR6'][0,:]
this_field = np.sqrt(this_field1**2 + this_field2**2)
elif f == 'SHR01':
this_field1 = fh.variables['USHR1'][0,:]
this_field2 = fh.variables['VSHR1'][0,:]
this_field = np.sqrt(this_field1**2 + this_field2**2)
elif f == 'LR75':
t500 = fh.variables['T_PL'][0,5,:]
t700 = fh.variables['T_PL'][0,3,:]
ht500 = fh.variables['GHT_PL'][0,5,:]
ht700 = fh.variables['GHT_PL'][0,3,:]
this_field = -(t700-t500)/(ht700-ht500)
elif f == 'CAPESHEAR':
ushr = fh.variables['USHR6'][0,:]
vshr = fh.variables['VSHR6'][0,:]
shr06 = np.sqrt(ushr**2 + vshr**2)
mlcape = fh.variables['MLCAPE'][0,:]
this_field = mlcape * shr06
elif f == 'STP':
lcl = fh.variables['MLLCL'][0,:]
sbcape = fh.variables['SBCAPE'][0,:]
srh01 = fh.variables['SRH01'][0,:]
sbcinh = fh.variables['SBCINH'][0,:]
ushr = fh.variables['USHR6'][0,:]
vshr = fh.variables['VSHR6'][0,:]
shr06 = np.sqrt(ushr**2 + vshr**2)
lclterm = ((2000.0-lcl)/1000.0)
lclterm = np.where(lcl<1000, 1.0, lclterm)
lclterm = np.where(lcl>2000, 0.0, lclterm)
shrterm = (shr06/20.0)
shrterm = np.where(shr06 > 30, 1.5, shrterm)
shrterm = np.where(shr06 < 12.5, 0.0, shrterm)
cinterm = ((200+sbcinh)/150.0)
cinterm = np.where(cinterm>-50, 1.0, cinterm)
cinterm = np.where(cinterm<-200, 0.0, cinterm)
this_field = (sbcape/1500.0) * lclterm * (srh01/150.0) * shrterm * cinterm
elif f in ['TD2']:
if model not in ['GEFS']: this_field = fh.variables['TD2'][0,:]
else:
import metpy.calc
from metpy.units import units
p = fh.variables['PSFC'][0,:]
r = fh.variables['Q2'][0,:]
this_field = metpy.calc.dewpoint(metpy.calc.vapor_pressure(p*units.Pa,r*units('kg/kg')))*units('K')
elif f in ['T925', 'T850', 'T700', 'T500']:
level = int(f[1:])
idx = press_levels.index(level)
this_field = fh.variables['T_PL'][0,idx,:]
elif f in ['TD925', 'TD850', 'TD700', 'TD500']:
level = int(f[2:])
idx = press_levels.index(level)
this_field = fh.variables['TD_PL'][0,idx,:]
elif f in ['U925', 'U850', 'U700', 'U500']:
level = int(f[1:])
idx = press_levels.index(level)
this_field = fh.variables['U_PL'][0,idx,:]
elif f in ['V925', 'V850', 'V700', 'V500']:
level = int(f[1:])
idx = press_levels.index(level)
this_field = fh.variables['V_PL'][0,idx,:]
elif f in ['UP_HELI_MAX80', 'UP_HELI_MAX120']:
this_field = fh.variables['UP_HELI_MAX'][0,:]
elif f in ['UP_HELI_MAX01-80', 'UP_HELI_MAX01-120']:
this_field = fh.variables['UP_HELI_MAX01'][0,:]
elif f in ['HAILCAST_DIAM_MAX']:
this_field = fh.variables['UP_HELI_MAX'][0,:]
this_field[:] = 0.0
else:
this_field = fh.variables[f][0,:]
# use maximum for certain fields, mean for others
if f in ['UP_HELI_MAX', 'UP_HELI_MAX03', 'UP_HELI_MAX01', 'W_UP_MAX', 'W_DN_MAX', 'WSPD10MAX', 'HAILCAST_DIAM_MAX']:
if model in ['NSC3km-12sec']: field_interp = upscale(this_field, type='max', maxsize=27)
else: field_interp = upscale(this_field, type='max', maxsize=27*3)
elif f in ['UP_HELI_MAX80', 'UP_HELI_MAX01-80']:
if model in ['NSC3km-12sec']: field_interp = upscale(this_field, type='max', maxsize=53)
else: field_interp = upscale(this_field, type='max', maxsize=53*3)
elif f in ['UP_HELI_MAX120', 'UP_HELI_MAX01-120']:
if model in ['NSC3km-12sec']: field_interp = upscale(this_field, type='max', maxsize=81)
else: field_interp = upscale(this_field, type='max', maxsize=81*3)
else:
if model in ['NSC3km-12sec']: field_interp = upscale(this_field, type='mean', maxsize=26) #should be 27?
else: field_interp = upscale(this_field, type='mean', maxsize=81)
upscaled_fields[f].append(field_interp)
fh.close()
except Exception as e:
print(e)
continue
if model == 'GEFS': np.savez_compressed('/glade/work/sobash/NSC/%s_%s_mem%d_upscaled'%(sdate.strftime('%Y%m%d%H'),model,mem), a=upscaled_fields)
#else: np.savez_compressed('/glade/work/sobash/NSC/%s_%s_upscaled'%(sdate.strftime('%Y%m%d%H'),model), a=upscaled_fields)
else: np.savez_compressed('/glade/work/sobash/NSC/%s_%s_upscaled'%(sdate.strftime('%Y%m%d%H'),model), a=upscaled_fields)
#plot_field = np.array(upscaled_fields['MUCAPE'])
#print plot_field.shape
#plot_field = np.amax(plot_field, axis=0)
# plotting
plotting = False
if plotting:
levels = np.arange(250,5000,250)
#levels = np.arange(0,100,2.5)
test = readNCLcm('MPL_Reds')[10:]
cmap = colors.ListedColormap(test)
norm = colors.BoundaryNorm(levels, ncolors=cmap.N, clip=True)
##awips.pcolormesh(x81, y81, np.ma.masked_less(u_interp, 100.0), cmap=cmap, norm=norm)
awips.pcolormesh(x81, y81, plot_field, cmap=cmap, norm=norm)
#awips.pcolormesh(x81, y81, env['b'], cmap=cmap, norm=norm)
awips.drawstates()
awips.drawcountries()
awips.drawcoastlines()
plt.savefig('test.png')