-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshow_importances.py
263 lines (226 loc) · 12.8 KB
/
show_importances.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from collections import defaultdict
import datetime
import glob
import visualizecv
import hwtmode
import hwtmode.data
import matplotlib.pyplot as plt
from ml_functions import load_df
import numpy as np
import os
import pandas as pd
import pdb
from scipy.stats import spearmanr
from scipy.cluster import hierarchy
from scipy.spatial.distance import squareform
import seaborn as sns
import sklearn
from sklearn.ensemble import RandomForestRegressor
from sklearn.inspection import permutation_importance
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.model_selection import cross_val_score, GroupKFold, KFold, StratifiedKFold, StratifiedGroupKFold
from sklearn.neighbors import KNeighborsRegressor
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.tree import DecisionTreeRegressor
import sys
import train_mode_dnn
from tensorflow.keras.utils import to_categorical
import xarray
#from xgboost import XGBRegressor
#np.random.seed(14)
neurons = 12
batch_size = 10 # Default is min(200, n_samples) if batch_size is around 25 or larger, ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
#models = [LinearRegression(), LogisticRegression(), DecisionTreeRegressor(), RandomForestRegressor(), XGBRegressor(), KNeighborsRegressor(), MLPClassifier(hidden_layer_sizes=(neurons,neurons))]
#models = [RandomForestRegressor(n_estimators=150), MLPClassifier(hidden_layer_sizes=(neurons,neurons))]
models = [] # if you just want matrix and dendrogram
models = [MLPClassifier(hidden_layer_sizes=(neurons,neurons),batch_size=batch_size)]
scoring = 'accuracy'
dist_thresholds = [1]
dist_thresholds = [2.5, 2, 1.5, 1, 0.5, .25, 0]
def corr_dendro_plot(X, suite=None, dist_thresholds=dist_thresholds, importances=None, figh=14):
features = X.columns
corr = spearmanr(X).correlation # just training data
# Ensure the correlation matrix is symmetric
corr = (corr + corr.T) / 2
np.fill_diagonal(corr, 1)
# We convert the correlation matrix to a distance matrix before performing
# hierarchical clustering using Ward's linkage.
distance_matrix = 1 - np.abs(corr)
dist_linkage = hierarchy.ward(squareform(distance_matrix))
for d in dist_thresholds:
fig = plt.figure(figsize=(18, figh))
ax1 = plt.subplot2grid((1,3),(0,0), colspan=2)
ax2 = plt.subplot2grid((1,3),(0,2), colspan=1)
ax2.grid(axis="x")
ax2.axvline(x=d, linestyle="dashed", linewidth=2)
ax2.set_xlabel("distance")
dendro = hierarchy.dendrogram(
dist_linkage, labels=X.columns, ax=ax2, orientation='right', color_threshold=d
)
ax2.invert_yaxis() # so order of labels in dendrogram matches correlation matrix
yticklabels = ax2.get_ymajorticklabels()
dendro_idx = np.arange(0, len(dendro["ivl"]))
ax1.imshow(corr[dendro["leaves"], :][:, dendro["leaves"]], cmap=sns.color_palette("vlag", as_cmap=True))
ax1.set_title("Spearman rank correlation between features in training data")
ax1.set_xticks(dendro_idx)
ax1.set_yticks(dendro_idx)
ax1.set_xticklabels(dendro["ivl"], rotation="vertical")
ax1.set_yticklabels(dendro["ivl"])
cluster_ids = hierarchy.fcluster(dist_linkage, d, criterion="distance")
if d>0 and importances is not None:
# merge importance and cluster_id columns into single DataFrame
pm = pd.concat([importances, pd.Series(cluster_ids, index=features, name="cluster_id")], axis=1)
selected_features = pm.groupby("cluster_id")["importance"].idxmax() # get feature with max importance
print(len(features), "to", len(selected_features), "features", selected_features.to_list())
fontsize=yticklabels[0].get_fontsize() + d*8 # starting with current ticklabel fontsize get bigger to the right.
for c, fs in pm.groupby("cluster_id"):
# label one member of each cluster
# Find the indices corresponding to this cluster and take the average tickvalue
ii = [dendro["ivl"].index(f) for f in fs.index]
y0 = np.mean(ax2.get_yticks()[ii])
ax2.text(d, y0, selected_features[c], va="center", ha="center", fontsize=fontsize)
fig.tight_layout()
ofile = os.path.realpath(f"dendro/{suite}_{d}_dendro.png")
plt.savefig(ofile)
print(ofile)
plt.close()
return dist_linkage
suite = "long2"
#print(f"suite = {suite}")
figh=14
def main():
features = train_mode_dnn.feature_dict[suite]
segmentations = ["hyst"]
class_startswith = None
labelpick = "first"
getstatic = True # Read merged dataset that was already created by hagelslag_obj_pdf.py
if getstatic:
ifile = f"/glade/scratch/ahijevyc/temp/HWT_mode_output/atts_and_expertlabels_"+".".join(segmentations)+".csv"
df = pd.read_csv(ifile, parse_dates=["labeltime", "Run_Date", "Valid_Date"])
else:
ifile = "/Users/ahijevyc/Downloads/atts_and_labels.csv"
df = pd.read_csv(ifile,header=0)
# Which labels to pick?
if labelpick == "first":
df = df.groupby("Step_ID").first()
elif labelpick == "last":
df = df.groupby("Step_ID").last()
elif labelpick == "all":
pass
df["seconds to classify"] = df["seconds to classify"].fillna(value=600)
df.loc[df["seconds to classify"] > 600,"seconds to classify"] = 600
X = df
if "orientation" in X:
X = hwtmode.data.decompose_circular_feature(X, "orientation", period=np.pi)
if "Valid_Hour_UTC" in X:
X.loc[:,"Local_Solar_Hour"] = X["Valid_Hour_UTC"] + X["Centroid_Lon"]/15.
X = hwtmode.data.decompose_circular_feature(X, "Local_Solar_Hour", period=24)
X = X[features]
# split into train and test.
train_idx = df.Valid_Date < pd.to_datetime("20130625")
# standard scale features based on training set
# assign numpy array returned by StandardScalar to original DataFrame. This preserves columns
X[X.columns] = StandardScaler().fit(X[train_idx]).transform(X)
# Without providing a list of importances, this won't label the best member from each cluster.
dist_linkage = corr_dendro_plot(X[train_idx], suite=suite, dist_thresholds=dist_thresholds, figh=figh)
seven_to_three_categories = True
if seven_to_three_categories:
df.loc[df["label"] =="D2","label"] = "D1" # D1/D2
df.loc[df["label"] =="S3","label"] = "S1" # S1/S3
df.loc[df["label"] =="Q2","label"] = "Q1"
df.loc[df["label"] =="S2","label"] = "Q1" # Q1/Q2/S2
if class_startswith:
y = df["label"].str.startswith(class_startswith).astype(float) # MLPClassifier can't handle Boolean y
else:
y = LabelEncoder().fit_transform(df["label"])
y = df["label"]
#y = to_categorical(y) # onehot vector
n_splits = 5
cv = GroupKFold(n_splits=n_splits)
# Also tried StratifiedGroupKFold. GroupKFold tries to keep same number of groups in each fold; class percentanges are a little uneven.
# https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedGroupKFold.html#sklearn.model_selection.StratifiedGroupKFold says
# GroupKFold attempts to create balanced folds so # of distinct groups is approximately the same in each fold, whereas StratifiedGroupKFold attempts to
# create folds that preserve percentage of samples for each class as much as possible given the constraint of non-overlapping groups between splits.
group = LabelEncoder().fit_transform(df.Run_Date)
plot_splits= False
if plot_splits:
fig, ax = plt.subplots()
visualizecv.plot_cv_indices(cv, X[train_idx], y[train_idx], group[train_idx], ax, n_splits)
plt.show()
n_repeats = 50
explabel = f"neurons={neurons} {labelpick} label\nbatch size={batch_size} scoring={scoring}"
explabel += f"\npermutation importance\n(mean drop in {scoring} from permuting feature)\nrepeated {n_repeats} times * {n_splits} cv splits"
assert models, "no models"
# HACK for just 1st model. get importances so we can choose the predictor with highest importance in each cluster
model = models[0]
ofile = os.path.realpath(f"{suite}_{neurons}neurons_{labelpick}label_{class_startswith}_bs{batch_size}_{n_splits}x{n_repeats}_imp.csv")
if os.path.exists(ofile):
feature_df = pd.read_csv(ofile, index_col=0)
else:
print(f"permutation importances n={n_repeats}")
pis = np.zeros((len(features), n_repeats*n_splits)) # empty numpy array, a row for each features, and a column for each importance
for i, (train,test) in enumerate(cv.split(X[train_idx],y[train_idx],group[train_idx])):
X_split = X[train_idx].iloc[train]
y_split = y[train_idx][train]
fittedestimator = model.fit(X_split, y_split)
pi = permutation_importance(estimator=fittedestimator, X=X_split, y=y_split, scoring=scoring, n_repeats=n_repeats).importances
pis[:,i*n_repeats:(i+1)*n_repeats] = pi
print(f"cross validation split {i}/{n_splits}")
feature_df = pd.DataFrame(pis, index=features)
feature_df.to_csv(ofile)
logging.info(f"made {ofile}")
ax = feature_df.T.boxplot(figsize=(18, 5),rot=90)
ax.set_ylabel(explabel)
ax.set_title(type(model).__name__)
plt.tight_layout()
ofile = os.path.join(os.getenv("TMPDIR"),f"{suite}_{neurons}neurons_{labelpick}label_{class_startswith}_bs{batch_size}_imp_barplot.png")
plt.savefig(ofile)
logging.info(f"created {ofile}")
plt.close()
feature_df["importance"] = feature_df.mean(axis="columns")
#Redo dendrograms with labels of best importance
dist_linkage = corr_dendro_plot(X[train_idx], suite=suite, dist_thresholds=dist_thresholds, figh=figh, importances=feature_df["importance"])
for dist_threshold in dist_thresholds:
cluster_ids = hierarchy.fcluster(dist_linkage, dist_threshold, criterion="distance")
feature_df["cluster_id"] = cluster_ids
selected_features = feature_df.groupby("cluster_id")["importance"].idxmax()
print(len(features), "to", len(selected_features), "features", selected_features.to_list())
X_train_sel = X[train_idx][selected_features]
if models:
fig, axes = plt.subplots(ncols=len(models), figsize=(len(models)*5, figh))
if len(models) == 1: axes = np.array(axes) # avoid AttributeError: 'AxesSubplot' object has no attribute 'flatten'
for ax, model in zip(axes.flatten(),models):
scores = cross_val_score(estimator=model, X=X_train_sel, y=y[train_idx], groups=group[train_idx], cv=cv)
print(f"dist_threshold={dist_threshold} {type(model).__name__} {scores} mean: {np.array(scores).mean()} std: {np.array(scores).std()}")
if type(model).__name__ in ["KNeighborsRegressor","MLPClassifier"]:
pis = np.zeros((len(selected_features), n_repeats*n_splits)) # empty numpy array, a row for each features, and a column for each importance
for i, (train,test) in enumerate(cv.split(X_train_sel,y[train_idx],group[train_idx])):
X_split = X_train_sel.iloc[train]
y_split = y[train_idx][train]
fittedestimator = model.fit(X_split, y_split)
pi = permutation_importance(estimator=fittedestimator, X=X_split, y=y_split, scoring=scoring, n_repeats=n_repeats).importances
pis[:,i*n_repeats:(i+1)*n_repeats] = pi
pis = pd.DataFrame(pis, index=selected_features)
for attr in ["coef_","feature_importances_"]:
if hasattr(model, attr):
importance = getattr(model,attr)
ax.set_xlabel(attr[0:-1])
if hasattr(model, "estimators_"): # e.g. RandomForestClassifier
pi = np.array([tree.feature_importances_ for tree in model.estimators_])
perm_sorted_idx = importance.argsort()
importances_sorted = pi[:,perm_sorted_idx]
ax.set_xlabel(f"tree based feature importance\n{model.n_estimators} trees")
if isinstance(model,sklearn.linear_model._logistic.LogisticRegression):
importance = importance[0]
pis.T.boxplot(ax=ax, vert=False)
ax.set_title(type(model).__name__)
fig.tight_layout()
if class_startswith:
plt.suptitle(f"class starts with {class_startswith}")
ofile = os.path.realpath(f"{suite}_{dist_threshold}_{neurons}neurons_{labelpick}label_{class_startswith}_bs{batch_size}_imp_barplot.png")
plt.savefig(ofile)
print(ofile)
plt.close()
if __name__ == "__main__":
main()