-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathindex.html
137 lines (131 loc) · 5.17 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
layout: landing-page
---
<div class="maintenance">
<span class="maintenance-badge">Important</span>
Chainer is under the maintenance phase. <a href="https://chainer.org/announcement/2019/12/05/released-v7.html">Read the blog.</a>
</div>
<!-- One -->
<section id="one" class="wrapper style1">
<div class="container">
<div class="row">
<header class="major">
<h2>Bridge the gap between algorithms and implementations of deep learning</h2>
</header>
<div class="4u">
<section class="special box">
<i class="icon fa-rocket major"></i>
<h3>Powerful</h3>
<p>
Chainer supports CUDA computation.
It only requires a few lines of code to leverage a GPU.
It also runs on multiple GPUs with little effort.
</p>
</section>
</div>
<div class="4u">
<section class="special box">
<i class="icon fa-puzzle-piece major"></i>
<h3>Flexible</h3>
<p>
Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recursive nets. It also supports per-batch architectures.
</p>
</section>
</div>
<div class="4u">
<section class="special box">
<i class="icon fa-bolt major"></i>
<h3>Intuitive</h3>
<p>
Forward computation can include any control flow statements of Python without lacking the ability of backpropagation. It makes code intuitive and easy to debug.
</p>
</section>
</div>
</div>
</div>
</section>
<section id="two" class="style1">
<div class="container">
<div class="row double">
<div id="quickstart" class="7u">
<header class="major">
<h2>Quick Start</h2>
</header>
<p>
Install Chainer:<br>
<pre><code>pip install chainer</code></pre>
</p>
<p>
Run the MNIST example:<br>
<pre><code>wget https://github.com/chainer/chainer/archive/v{{ site.chainer_version }}.tar.gz
tar xzf v{{ site.chainer_version }}.tar.gz
python chainer-{{ site.chainer_version }}/examples/mnist/train_mnist.py</code></pre>
</p>
<p>
Learn more from <a href="http://docs.chainer.org">the official documentation</a>.
</p>
</div>
</div>
</div>
</section>
<section id="two-2" class="style1">
<div class="container">
<header class="major">
<h2>Extension Libraries</h2>
</header>
<div class="row extensions">
<div class="4u">
<div class="extension-item" id="chainerrl">
<a href="https://github.com/chainer/chainerrl">
<div class="extension-cover"></div>
</a>
<div class="extension-icon">
<img src="images/RL1-2.png" alt="ChainerRL" />
</div>
<div class="extension-content">
A library that implements various state-of-the-art deep reinforcement algorithms.
</div>
</div>
</div>
<div class="4u">
<div class="extension-item" id="chainercv">
<a href="https://github.com/chainer/chainercv">
<div class="extension-cover"></div>
</a>
<div class="extension-icon">
<img src="images/CV1-2.png" alt="ChainerCV" />
</div>
<div class="extension-content">
A collection of tools to train and run neural networks for computer vision tasks.
</div>
</div>
</div>
</div>
</div>
</section>
<section id="three" class="wrapper style1">
<header class="major">
<h2>Slides</h2>
</header>
<div class="container">
<strong>
<a href="//www.slideshare.net/pfi/introduction-to-chainer-11-may2018-96768990" title="Introduction to Chainer 11 may,2018" target="_blank">Introduction to Chainer</a>
</strong>
</div>
</section>
<section id="parters" class="wrapper style1">
<header class="major">
<h2>Companies supporting Chainer</h2>
</header>
<div class="container small">
<section class="special">
<ul class="actions fit logo">
<li><img src="images/ibm.png" alt="IBM" class="logo"/></li>
<li><img src="images/intel.png" alt="Intel" class="logo"/></li>
<li><img src="images/microsoft.png" alt="Microsoft" class="logo"/></li>
<li><img src="images/nvidia.png" alt="NVIDIA" class="logo"/></li>
<li><img src="images/aws.png" alt="AWS" class="logo"/></li>
</ul>
</section>
</div>
</section>