-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata.py
32 lines (27 loc) · 1.13 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import glob
import torch
from odak.learn.tools import load_image
def load(fn,device):
target = load_image(fn).to(device).double()
if len(target.shape) > 2:
if target.shape[2] > 2:
target = target[:,:,0:3]
if len(target.shape) > 2:
target = torch.mean(target,2)
if target.max() > 1.:
target = target/255.
return target.float()
class DatasetFromFolder():
def __init__(self,input_directory,output_directory,device,key='.png'):
self.device = device
self.key = key
self.input_directory = input_directory
self.output_directory = output_directory
self.input_filenames = sorted(glob.glob(input_directory+'/**/*{}'.format(self.key),recursive=True))
self.output_filenames = sorted(glob.glob(output_directory+'/**/*{}'.format(self.key),recursive=True))
def __getitem__(self, index):
input_image = load(self.input_filenames[index],self.device)
output_image = load(self.output_filenames[index],self.device)
return input_image,output_image
def __len__(self):
return len(self.input_filenames)