-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAMDF-demo.py
243 lines (183 loc) · 7.08 KB
/
AMDF-demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#!/usr/bin/python
# -*- coding: utf-8 -*-'
# AMDF-demo.py
# D. Gibbon
# 2018-10-10
# Pitch Estimator based on Average Magnitude Difference Function
import sys, re
import numpy as np
from scipy.signal import medfilt, hilbert
import scipy.io.wavfile as wav
import matplotlib.pyplot as plt
#==============================================================================
# Parameters
try:
filename = sys.argv[1]
voice = sys.argv[2]
figtype = sys.argv[3]
filebase = re.sub('.wav','',filename)
print filename,filebase
except:
print 'Usage: PyADMF.py wavfilename high|fairlyhigh|mid|fairlylow|low single|multiple'; exit()
try:
if figtype == 'single':
singlefigure = True
else:
singlefigure = False
framerate = 0.01
centreclip = 10
winoffsetdivisor = 20.0
medianwindow = 3
envelopeflag = False
spectmin = 0
spectmax = 5000
spectwinfactor = 20
if voice == 'high':
f0min = 160
f0max = 450
elif voice == 'fairlyhigh':
f0min = 140
f0max = 400
elif voice == 'mid':
f0min = 120
f0max = 350
elif voice == 'fairlylow':
f0min = 100
f0max = 300
elif voice == 'low':
f0min = 50
f0max = 250
else:
print 'Unknown voice type.'; exit()
except:
print 'Parameter error.'; exit()
#==============================================================================
#==============================================================================
# WAV file input
try:
fs, signal = wav.read(filename)
sigstart = 6400
sigend = sigstart + 4/framerate # for a good chunk of jiayan.wav
# plt.plot(signal[sigstart:sigend]) ; plt.show() ; exit() # for chunk test
signallen = len(signal)
signalduration = int(round(1.0*signallen/fs))
sampframeratio = fs * framerate
framelen = np.int(round(fs * framerate))
framecount = np.int(round(1.0 * signallen / framelen))
diffoffset = np.int(round(framelen/winoffsetdivisor))
newsignallen = framecount * framelen
signal = signal[:newsignallen]
spectwin = int(fs / spectwinfactor)
print "Sampling rate: %s Hz"%fs
print "len(signal): %s"%len(signal)
except:
print "Error reading signal."; exit()
#==============================================================================
#==============================================================================
# Preprocessing (centre-clipping)
try:
"""
signal = (abs(signal) > centreclip).astype(np.int) * signal
"""
except:
print "Error preprocessing."; exit()
#==============================================================================
# F0 estimation
if True:
irange = range(0, signallen-2*framelen, framelen) # Note truncation.
# Allocate memory for f0list and AMDF list
f0list = np.zeros(framecount)
meandiffs = np.zeros(framelen).tolist()
# Move frame window through signal
smallestlist = []
count = 0
for framestart in irange:
framestop = framestart + framelen
frame = signal[framestart:framestop]
# Calculate Average Magnitude Difference Function with moving window
indx = 0
for winstart in range(framestart,framestop):
movingwin = signal[winstart:winstart+framelen]
absdiffs = abs(frame - movingwin)
meandiffs[indx] = np.mean(absdiffs)
indx += 1
# Pick smallest absolute difference in frame
smallest = np.min(meandiffs[diffoffset:])
smallestlist += [smallest]
# Get position of the smallest absolute difference
index = meandiffs.index(smallest)
# Divide the sampling rate by the number of samples in the interval
f0 = fs / index # That is: t = index/fs; f0 = 1/t
# Extend f0 list
f0list[count] = f0
count += 1
teststart = sigstart
if framestart == teststart:
segmentsize = 3 * framelen
copystart = teststart + index
framecopy = signal[copystart:copystart+framelen]
absdiffs = abs(frame-framecopy)
absdiffs = absdiffs/float(max(absdiffs))
copylen = len(framecopy)
signal = signal/float(max(abs(signal)))
framecopy = framecopy/float(max(abs(framecopy)))
period = float(index)/fs
frequency = fs/index
sigsegment = np.array(signal[teststart:teststart+segmentsize])
sigsegmentlen = float(len(sigsegment))
x = np.linspace(0.0,sigsegmentlen,sigsegmentlen)
xx = np.array(x)/fs
fontsize = 20
#==============================================================================
fig, (sp1,sp2,sp3,sp4) = plt.subplots(4, 1, figsize=(22,8))
# sp1.set_title("Smallest Average Magnitude Difference: Position: %s samples, Period: %.4f s, Frequency: %d Hz."%(index,period,frequency),fontsize=fontsize)
sp1.plot(xx,sigsegment,label="Signal",linewidth=2)
sp1.axvline(x=0.00003, label="Frame limits",linewidth=2,color='r')
for i in np.linspace(0,sigsegmentlen,framelen/40)/fs:
sp1.axvline(x=i,linewidth=2,color='r')
sp1.set_xlabel("Time (s), sampling rate = %d Hz, segment length = %.3f s, frame length = %3f s"%(fs,1.0*sigsegmentlen/fs,1.0*framelen/fs),fontsize=fontsize)
sp1.legend()
sp2.plot(signal[teststart:teststart+segmentsize],label="Signal")
sp2.plot(range(framelen),signal[teststart:teststart+framelen],color='r')
sp2.scatter(range(framelen),signal[teststart:teststart+framelen],color='r',s=10,label="Frame")
sp2.legend()
for i in np.linspace(0.5,sigsegmentlen,framelen/40):
sp2.axvline(x=i,linewidth=2,color='r')
sp2.set_xlabel("Samples, sampling rate = %d Hz, sample period = %7f s"%(fs, 1.0/fs),fontsize=fontsize)
sp3.plot(signal[teststart:teststart+segmentsize],label="Signal")
sp3.plot(range(index,index+framelen),signal[copystart:copystart+framelen],color='g',label="Copy")
sp3.scatter(range(index,index+len(framecopy)),framecopy,marker="x",color='g',s=30)
for i in np.linspace(0.5,sigsegmentlen,framelen/40):
sp3.axvline(x=i,linewidth=2,color='r')
sp3.axvline(x=index,linewidth=4,color='purple',label="First smallest average difference")
sp3.legend()
sp4.plot(range(index,index+framelen),absdiffs,label="AMDF",color='orange',linewidth=2)
sp4.axvline(x=index,linewidth=4,color='purple',label="First smallest average difference")
sp4.axhline(xmin=0.0,xmax=index/sigsegmentlen, y=0.5,linestyle=':', linewidth=4, color='purple', label="Period: %.6fs, Frequency: %d Hz"%(1.0*index/fs,fs/index))
for i in np.linspace(0.5,sigsegmentlen,framelen/40):
sp4.axvline(x=i,linewidth=2,color='r')
sp4.legend()
sp1.set_xlim(0,1.0*sigsegmentlen/fs); sp1.set_ylim(-1,1)
sp2.set_xlim(0,segmentsize); sp2.set_ylim(-1,1)
sp3.set_xlim(0,segmentsize); sp3.set_ylim(-1,1)
sp4.set_xlim(0,segmentsize); sp4.set_ylim(0,1)
if False:
print "F0 estimation error."; exit()
#==============================================================================
# Post-processing
try:
# Remove f0 values outside defined limits
# f0list = (f0list > f0min).astype(int) * f0list
# f0list = (f0list < f0max).astype(int) * f0list
# Smooth F0 contour
# f0list = medfilt(f0list,medianwindow)
# plt.scatter(range(len(signal)),signal)
# plt.scatter(range(len(smallestlist)),smallestlist)
# plt.scatter(range(len(f0list)),f0list)
plt.tight_layout()
plt.savefig("speech-amd-frames-%s.png"%filebase)
plt.show()
except:
print "Post-processing failed."; exit()
#==============================================================================
#==============================================================================