-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenvironment.py
108 lines (84 loc) · 2.79 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
import gym
import numpy as np
import torch
from baselines import bench
from baselines.common.vec_env import VecEnvWrapper
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.common.vec_env.shmem_vec_env import ShmemVecEnv
try:
import pybullet_envs
except ImportError:
pass
def make_env(env_id, seed, rank, log_dir):
def _thunk():
env = gym.make(env_id)
env.seed(seed + rank)
env = GymToFloat32(env)
if log_dir is not None:
env = bench.Monitor(env, os.path.join(log_dir, str(rank)))
return env
return _thunk
def make_vec_envs(env_name,
seed,
num_processes,
gamma,
log_dir,
device,
):
envs = [
make_env(env_name, seed, i, log_dir)
for i in range(num_processes)
]
if len(envs) > 1:
envs = ShmemVecEnv(envs, context='fork')
else:
envs = DummyVecEnv(envs)
# if len(envs.observation_space.shape) == 1:
# if gamma is None:
# envs = VecNormalize(envs, ret=False)
# else:
# envs = VecNormalize(envs, gamma=gamma)
envs = VecPyTorch(envs, device)
return envs
class GymToFloat32(gym.ObservationWrapper):
def __init__(self, env):
super(GymToFloat32, self).__init__(env)
old_shape = self.observation_space.shape
self.observation_space = gym.spaces.Box(
low=-1.0,
high=1.0,
shape=old_shape,
dtype=np.float32,
)
def observation(self, observation):
if observation.dtype != np.float32:
return observation.astype(np.float32)
else:
return observation
class VecPyTorch(VecEnvWrapper):
def __init__(self, venv, device):
"""Return only every `skip`-th frame"""
super(VecPyTorch, self).__init__(venv)
self.device = device
def reset(self):
obs = self.venv.reset()
obs = torch.from_numpy(obs).float().to(self.device)
return obs
def step_async(self, actions):
actions = actions.cpu().numpy()
self.venv.step_async(actions)
def step_wait(self):
obs, reward, done, info = self.venv.step_wait()
obs = torch.from_numpy(obs).float().to(self.device)
reward = torch.from_numpy(reward).unsqueeze(dim=1).float().to(self.device)
return obs, reward, done, info
if __name__ == '__main__':
from arguments import get_args
args = get_args()
envs = make_vec_envs(args.task_id, args.seed, args.num_processes,
args.gamma, args.log_dir, args.device)
obs = envs.reset()
print('obs: ', obs.shape)
print('low: ', envs.action_space.low[0])
print('high: ', envs.action_space.high[0])