-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrsa
349 lines (316 loc) · 18.3 KB
/
rsa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/*
Copyright (C) 2018-2024 Geoffrey Daniels. https://gpdaniels.com/
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3 of the License only.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma once
#ifndef GTL_CRYPTO_RSA_HPP
#define GTL_CRYPTO_RSA_HPP
// Summary: An implementation of the RSA (Rivest-Shamir-Adleman) asymmetric encryption algorithm.
#ifndef NDEBUG
# if defined(_MSC_VER)
# define __builtin_trap() __debugbreak()
# endif
/// @brief A simple assert macro to break the program if the rsa is misused.
# define GTL_RSA_ASSERT(ASSERTION, MESSAGE) static_cast<void>((ASSERTION) || (__builtin_trap(), 0))
#else
/// @brief At release time the assert macro is implemented as a nop.
# define GTL_RSA_ASSERT(ASSERTION, MESSAGE) static_cast<void>(0)
#endif
#include <math/big_unsigned>
#if defined(_MSC_VER)
#pragma warning(push, 0)
#endif
#include <functional>
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
namespace gtl {
/// @brief The rsa class implements all the routines needed to generate primes and used them to perform asymmetric encryption.
class rsa final {
public:
/// @brief The public key is used to encrypt data or verify signed data.
class public_key_type final {
public:
gtl::big_unsigned public_modulus;
gtl::big_unsigned public_exponent;
};
/// @brief The private key is used to decrypt data or sign data.
/// @note Only the public_modulus and private_exponent are needed for decryption.
class private_key_type final {
public:
gtl::big_unsigned public_modulus;
gtl::big_unsigned public_exponent;
gtl::big_unsigned private_exponent;
gtl::big_unsigned primes[2];
gtl::big_unsigned exponents[2];
gtl::big_unsigned coefficient;
};
/// @brief Storage class for a public and private key pair.
class key_type final {
public:
public_key_type public_key;
private_key_type private_key;
};
private:
/// @brief Generate a random big number.
/// @param minimum The lower inclusive bound for the returned random number.
/// @param maximum The upper exclusive bound for the returned random number.
/// @return A random number between the (inclusive) minimum and (exclusive) maximum bounds.
static gtl::big_unsigned generate_random(const std::function<unsigned int()>& random_generator, const gtl::big_unsigned& minimum, const gtl::big_unsigned& maximum) {
// Generate random bits
gtl::big_unsigned random = minimum;
while (random < maximum) {
random = (random << gtl::big_unsigned::chunk_bits) | random_generator();
}
return (minimum + random) % maximum;
}
/// @brief Generate a random prime number.
/// @param size_bytes The number of bytes in the prime.
/// @param miller_rabin_iterations The number of miller rabin test iterations to validate primality.
/// @return A random prime number.
static gtl::big_unsigned generate_prime(const std::function<unsigned int()>& random_generator, unsigned int size_bytes, unsigned int miller_rabin_iterations) {
gtl::big_unsigned prime;
do {
// Generate a number.
prime = rsa::generate_random(random_generator, 1u, gtl::big_unsigned(1u) << (size_bytes * 8));
// Ensure it's got the lsb and msb set, aka odd and full size.
prime |= (gtl::big_unsigned(1u) << ((size_bytes * 8u) - 1u)) | 1u;
// Check if the number is prime, if not try again.
} while (!rsa::is_prime(random_generator, prime, miller_rabin_iterations));
return prime;
}
/// @brief Check if a given number is a prime number.
/// @param prime_candidate The prime number candidate to test.
/// @param miller_rabin_iterations The number of miller rabin test iterations to validate primality.
/// @return true if the prime number candidate is probably a prime number.
static bool is_prime(const std::function<unsigned int()>& random_generator, const gtl::big_unsigned& prime_candidate, unsigned int miller_rabin_iterations = 64) {
// Corner cases.
if (prime_candidate < 2) {
return false;
}
// List of the first 256 primes.
constexpr static const unsigned int first_256_primes[256] = {
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239,
241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337,
347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433,
439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541,
547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743,
751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857,
859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971,
977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069,
1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193,
1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301,
1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439,
1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549,
1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657,
1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783
};
// Check if the candidate is divisible by one of the first 256 primes.
for (unsigned int i = 0; i < 256; ++i) {
if ((prime_candidate % first_256_primes[i]) == 0) {
// If it is divisible it is only prime if it is exactly that value.
return prime_candidate == first_256_primes[i];
}
}
// Calculate a helper variable for the miller rabin to avoid recalculating it each iteration.
// power_of_two_multiplier is an odd number such that "power_of_two_multiplier = (prime_candidate - 1) / (2 ^ power_of_two)" for "power_of_two >= 1".
gtl::big_unsigned power_of_two_multiplier = prime_candidate - 1;
while (power_of_two_multiplier % 2 == 0) {
power_of_two_multiplier /= 2;
}
// Iterate given nber of 'k' times
for (unsigned int i = 0; i < miller_rabin_iterations; ++i) {
if (!rsa::miller_rabin(random_generator, prime_candidate, power_of_two_multiplier)) {
return false;
}
}
return true;
}
/// @brief The miller rabin test to evaluate the primality of a number.
/// @param prime_candidate The prime number candidate to test.
/// @param power_of_two_multiplier Helper variable equal to "(prime_candidate - 1) / (2 ^ power_of_two)" for "power_of_two >= 1"
/// @return true if the test past and the number could be a prime number, false if the number is definitely not prime.
static bool miller_rabin(const std::function<unsigned int()>& random_generator, const gtl::big_unsigned& prime_candidate, gtl::big_unsigned power_of_two_multiplier) {
// Pick a random number in "[2 ... prime_candidate - 2]".
gtl::big_unsigned base = rsa::generate_random(random_generator, 2, prime_candidate - 2);
// Compute "(base ^ power_of_two_multiplier) % prime_candidate".
gtl::big_unsigned test = rsa::modular_exponentiation(base, power_of_two_multiplier, prime_candidate);
// Corner case checks.
if ((test == 1) || (test == (prime_candidate - 1))) {
return true;
}
// Keep squaring "test" until:
// - "power_of_two_multiplier" does not reach "prime_candidate - 1".
// - "(test ^ 2) % prime_candidate" is not one.
// - "(test ^ 2) % prime_candidate" is not "prime_candidate - 1".
while (power_of_two_multiplier != (prime_candidate - 1)) {
test = (test * test) % prime_candidate;
power_of_two_multiplier <<= 1;
if (test == 1) {
return false;
}
if (test == (prime_candidate - 1)) {
return true;
}
}
return false;
}
/// @brief Calculates the greatest common denominator of two big numbers.
/// @param value_a One of the numbers to calculate the greatest common denominator of.
/// @param value_b One of the numbers to calculate the greatest common denominator of.
/// @return The greatest common denominator of the two numbers.
/// @note Also known as the greatest common devisor, or the highest common factor, or highest common divisor.
static gtl::big_unsigned greatest_common_denominator(gtl::big_unsigned value_a, gtl::big_unsigned value_b) {
// Ensure value_a is smaller than value_b.
if (value_a > value_b) {
gtl::big_unsigned swap;
swap = value_a;
value_a = value_b;
value_b = swap;
}
// Reduce values until remainder is zero.
while (true) {
gtl::big_unsigned remainder = value_b % value_a;
if (remainder == 0) {
return value_a;
}
value_b = value_a;
value_a = remainder;
}
}
/// @brief Calculate the modular multiplicative inverse of a number.
/// @param value The value to calculate the modular multiplicative inverse of.
/// @param modulus The modulus used in the calculation.
/// @return The modular multiplicative inverse of the input value.
/// @note The modular inverse of "value % modulus" is "value^-1" such that "(value * value^-1) % modulus" is one.
static gtl::big_unsigned modular_inverse(gtl::big_unsigned value, const gtl::big_unsigned& modulus) {
GTL_RSA_ASSERT(rsa::greatest_common_denominator(value, modulus) == 1, "Value and modulus must be co-primes.");
gtl::big_unsigned result = 1;
gtl::big_unsigned previous = 0;
gtl::big_unsigned quotient = modulus;
bool inverse = false;
while (true) {
gtl::big_unsigned remainder;
quotient = gtl::big_unsigned::divide(quotient, value, remainder);
if (remainder == 0) {
if (value != 1) {
return 0;
}
else if (inverse) {
return modulus - result;
}
else {
return result;
}
}
gtl::big_unsigned temp = result;
result = result * quotient + previous;
previous = temp;
quotient = value;
value = remainder;
inverse = !inverse;
}
}
/// @brief Calculate the modular exponentiation of a number.
/// @param value The value to calculate the modular exponentiation of.
/// @param exponent The exponent to raise the value to.
/// @param modulus The modulus used in the calculation.
/// @return The modular exponentiation of the input value.
/// @note The modular exponentiation of "value" is "(value ^ exponent) % modulus".
static gtl::big_unsigned modular_exponentiation(const gtl::big_unsigned& value, const gtl::big_unsigned& exponent, const gtl::big_unsigned& modulus){
gtl::big_unsigned result = 1;
gtl::big_unsigned square = value;
long long int bits = static_cast<long long int>(exponent.get_length_bits());
for (long long int i = bits - 1; i >= 0; --i) {
if (exponent.get_bit(static_cast<unsigned long long int>(i))) {
result = (result * square) % modulus;
square = (square * square) % modulus;
}
else {
square = (result * square) % modulus;
result = (result * result) % modulus;
}
}
return result;
}
public:
/// @brief Generate a public and private key set.
/// @param size_bytes The number of bytes in the keys..
/// @param miller_rabin_iterations The number of miller rabin test iterations to validate primality.
/// @return A public and private key set.
static key_type generate_key_pair(const std::function<unsigned int()>& random_generator, unsigned int size_bytes, unsigned int exponent = 65537, unsigned int miller_rabin_iterations = 64) {
key_type keys;
keys.private_key.public_exponent = exponent;
keys.public_key.public_exponent = exponent;
gtl::big_unsigned phi;
do {
keys.private_key.primes[0] = rsa::generate_prime(random_generator, size_bytes / 2, miller_rabin_iterations);
keys.private_key.primes[1] = rsa::generate_prime(random_generator, size_bytes / 2, miller_rabin_iterations);
keys.private_key.public_modulus = keys.private_key.primes[0] * keys.private_key.primes[1];
keys.public_key.public_modulus = keys.private_key.public_modulus;
phi = (keys.private_key.primes[0] - 1) * (keys.private_key.primes[1] - 1);
} while (
(keys.private_key.primes[0] == keys.private_key.primes[1]) ||
(rsa::greatest_common_denominator(phi, exponent) != 1)
);
keys.private_key.private_exponent = rsa::modular_inverse(keys.public_key.public_exponent, phi);
keys.private_key.exponents[0] = keys.private_key.private_exponent % (keys.private_key.primes[0] - 1);
keys.private_key.exponents[1] = keys.private_key.private_exponent % (keys.private_key.primes[1] - 1);
keys.private_key.coefficient = rsa::modular_inverse(keys.private_key.primes[1], keys.private_key.primes[0]);
return keys;
}
public:
/// @brief Transform a block of data writing the transformed data into the output.
/// @param data The block of data to encrypt, must be at least length bytes long.
/// @param length The length of the data, must be equal to the key length.
/// @param exponent Exponent used to transform the data, must be length bytes long.
/// @param modulus Modulus used to transform the data, must be length bytes long.
/// @param output Pointer to an output buffer that will receive the transformed data, must be at least length bytes long
/// @note For encryption the exponent is the public exponent, and modulus is the public modulus.
/// @note For decryption the exponent is the private exponent, and modulus is the public modulus.
static void transform_block(const unsigned char* data, const unsigned int length, const unsigned char* exponent, const unsigned char* modulus, unsigned char* output) {
rsa::modular_exponentiation(
gtl::big_unsigned(data, length),
gtl::big_unsigned(exponent, length),
gtl::big_unsigned(modulus, length)
).to_bytes(output, length);
}
public:
/// @brief Encrypt a block of data, writing the edcrypted data into the output.
/// @param data The block of data to encrypt, must be at least length bytes long.
/// @param length The length of the data, must be equal to the key length.
/// @param public_key The public key data used to encrypt the data.
/// @param output Pointer to an output buffer that will receive the encrypted data, must be at least length bytes long.
static void encrypt(const unsigned char* data, const unsigned int length, const public_key_type& public_key, unsigned char* output) {
rsa::modular_exponentiation(
gtl::big_unsigned(data, length),
public_key.public_exponent,
public_key.public_modulus
).to_bytes(output, length);
}
/// @brief Decrypt a block of data, writing the decrypted data into the output.
/// @param data The block of data to decrypt, must be at least length bytes long.
/// @param length The length of the data, must be equal to the key length.
/// @param private_key The private key data used to decrypt the data.
/// @param output Pointer to an output buffer that will receive the decrypted data, must be at least length bytes long.
static void decrypt(const unsigned char* data, const unsigned int length, const private_key_type& private_key, unsigned char* output) {
rsa::modular_exponentiation(
gtl::big_unsigned(data, length),
private_key.private_exponent,
private_key.public_modulus
).to_bytes(output, length);
}
};
}
#undef GTL_RSA_ASSERT
#endif // GTL_CRYPTO_RSA_HPP