-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpinhole
182 lines (156 loc) · 7.71 KB
/
pinhole
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
Copyright (C) 2018-2024 Geoffrey Daniels. https://gpdaniels.com/
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3 of the License only.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma once
#ifndef GTL_VISION_CAMERA_MODEL_PINHOLE_HPP
#define GTL_VISION_CAMERA_MODEL_PINHOLE_HPP
// Summary: Pinhole camera model with no distortion. [wip]
#ifndef NDEBUG
# if defined(_MSC_VER)
# define __builtin_trap() __debugbreak()
# endif
/// @brief A simple assert macro to break the program if the pinhole is misused.
# define GTL_PINHOLE_ASSERT(ASSERTION, MESSAGE) static_cast<void>((ASSERTION) || (__builtin_trap(), 0))
#else
/// @brief At release time the assert macro is implemented as a nop.
# define GTL_PINHOLE_ASSERT(ASSERTION, MESSAGE) static_cast<void>(0)
#endif
namespace {
using size_t = decltype(sizeof(0));
}
namespace gtl {
template <typename type>
class pinhole final {
public:
constexpr static const size_t parameter_count = 4;
private:
type focal_lengths[2];
type centre_points[2];
private:
constexpr static const type abs(type value) {
if ((value + type(0)) < 0) {
return -value;
}
return value;
}
public:
pinhole()
: focal_lengths{ type(1.0), type(1.0) }
, centre_points{ type(0.5), type(0.5) } {
}
pinhole(const type* const __restrict parameters, const size_t parameters_length) {
GTL_PINHOLE_ASSERT(parameters_length == pinhole::parameter_count, "Parameters length must match internal number of parameters.");
this->set_parameters(parameters, parameters_length);
}
public:
void set_parameters(const type* const __restrict parameters, const size_t parameters_length) {
GTL_PINHOLE_ASSERT(parameters_length == pinhole::parameter_count, "Parameters length must match internal number of parameters.");
static_cast<void>(parameters_length);
this->focal_lengths[0] = parameters[0];
this->focal_lengths[1] = parameters[1];
this->centre_points[0] = parameters[2];
this->centre_points[1] = parameters[3];
GTL_PINHOLE_ASSERT(this->focal_lengths[0] > 0, "Horiztonal focal length must be greater than zero.");
GTL_PINHOLE_ASSERT(this->focal_lengths[1] > 0, "Vertical focal length must be greater than zero.");
}
void get_parameters(type* const __restrict parameters, const size_t parameters_length) const {
GTL_PINHOLE_ASSERT(parameters_length == pinhole::parameter_count, "Parameters length must match internal number of parameters.");
static_cast<void>(parameters_length);
parameters[0] = this->focal_lengths[0];
parameters[1] = this->focal_lengths[1];
parameters[2] = this->centre_points[0];
parameters[3] = this->centre_points[1];
}
public:
bool project(
const type* const __restrict point_xyz,
type* const __restrict point_xy,
type* const __restrict jacobian_projection = nullptr,
type* const __restrict jacobian_parameters = nullptr
) const {
// Cannot project points with no depth, also return false for those behind the camera.
if (abs(point_xyz[2]) < type(1.0e-12)) {
return false;
}
// Project.
const type inverse_z = type(1.0) / point_xyz[2];
const type undistorted_xy[2] = {
point_xyz[0] * inverse_z,
point_xyz[1] * inverse_z
};
// Scale and offset.
point_xy[0] = this->focal_lengths[0] * undistorted_xy[0] + this->centre_points[0];
point_xy[1] = this->focal_lengths[1] * undistorted_xy[1] + this->centre_points[1];
// Compute the projection jacobian.
if (jacobian_projection != nullptr) {
// Python:
// import sympy
// fx, fy, cx, cy, X, Y, Z = sympy.symbols('fx, fy, cx, cy, X, Y, Z')
// sympy.cse(sympy.Matrix([fx*X/Z+cx, fy*Y/Z+cy]).jacobian(sympy.Matrix([X, Y, Z])))
const type inverse_z_squared = inverse_z * inverse_z;
jacobian_projection[0 * 3 + 0] = this->focal_lengths[0] * inverse_z;
jacobian_projection[0 * 3 + 1] = type(0.0);
jacobian_projection[0 * 3 + 2] = -this->focal_lengths[0] * point_xyz[0] * inverse_z_squared;
jacobian_projection[1 * 3 + 0] = type(0.0);
jacobian_projection[1 * 3 + 1] = this->focal_lengths[1] * inverse_z;
jacobian_projection[1 * 3 + 2] = -this->focal_lengths[1] * point_xyz[1] * inverse_z_squared;
}
// Compute the parameters jacobian.
if (jacobian_parameters != nullptr) {
// Python:
// import sympy
// fx, fy, cx, cy, X, Y, Z = sympy.symbols('fx, fy, cx, cy, X, Y, Z')
// sympy.cse(sympy.Matrix([fx*X/Z+cx, fy*Y/Z+cy]).jacobian(sympy.Matrix([fx, fy, cx, cy])))
jacobian_parameters[0 * pinhole::parameter_count + 0] = undistorted_xy[0];
jacobian_parameters[0 * pinhole::parameter_count + 1] = type(0.0);
jacobian_parameters[0 * pinhole::parameter_count + 2] = type(1.0);
jacobian_parameters[0 * pinhole::parameter_count + 3] = type(0.0);
jacobian_parameters[1 * pinhole::parameter_count + 0] = type(0.0);
jacobian_parameters[1 * pinhole::parameter_count + 1] = undistorted_xy[1];
jacobian_parameters[1 * pinhole::parameter_count + 2] = type(0.0);
jacobian_parameters[1 * pinhole::parameter_count + 3] = type(1.0);
}
return true;
}
bool unproject(
const type* const __restrict point_xy,
type* const __restrict ray_xyz,
type* const __restrict jacobian_unprojection = nullptr
) const {
// Scale and offset.
const type undistorted_xy[2] = {
(point_xy[0] - this->centre_points[0]) / this->focal_lengths[0],
(point_xy[1] - this->centre_points[1]) / this->focal_lengths[1]
};
// Unproject.
ray_xyz[0] = undistorted_xy[0];
ray_xyz[1] = undistorted_xy[1];
ray_xyz[2] = type(1.0);
// Compute the unprojection jacobian.
if (jacobian_unprojection != nullptr) {
// Python:
// import sympy
// fx, fy, cx, cy, X, Y, Z = sympy.symbols('fx, fy, cx, cy, X, Y, Z')
// sympy.cse(sympy.Matrix([(X-cx)/fx, (Y-cy)/fy, 1]).jacobian(sympy.Matrix([X, Y])))
jacobian_unprojection[0 * 2 + 0] = type(1.0) / this->focal_lengths[0];
jacobian_unprojection[0 * 2 + 1] = type(0.0);
jacobian_unprojection[1 * 2 + 0] = type(0.0);
jacobian_unprojection[1 * 2 + 1] = type(1.0) / this->focal_lengths[1];
jacobian_unprojection[2 * 2 + 0] = type(0.0);
jacobian_unprojection[2 * 2 + 1] = type(0.0);
}
return true;
}
};
}
#undef GTL_PINHOLE_ASSERT
#endif // GTL_VISION_CAMERA_MODEL_PINHOLE_HPP