-
Notifications
You must be signed in to change notification settings - Fork 227
/
Copy pathapp.py
executable file
·334 lines (313 loc) · 12.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import gradio as gr
import numpy as np
from audioldm import text_to_audio, build_model
# from share_btn import community_icon_html, loading_icon_html, share_js
model_id = "haoheliu/AudioLDM-S-Full"
audioldm = None
current_model_name = None
# audioldm=None
# def predict(input, history=[]):
# # tokenize the new input sentence
# new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# # append the new user input tokens to the chat history
# bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# # generate a response
# history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
# # convert the tokens to text, and then split the responses into lines
# response = tokenizer.decode(history[0]).split("<|endoftext|>")
# response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
# return response, history
def text2audio(text, duration, guidance_scale, random_seed, n_candidates, model_name):
global audioldm, current_model_name
if audioldm is None or model_name != current_model_name:
audioldm=build_model(model_name=model_name)
current_model_name = model_name
# print(text, length, guidance_scale)
waveform = text_to_audio(
latent_diffusion=audioldm,
text=text,
seed=random_seed,
duration=duration,
guidance_scale=guidance_scale,
n_candidate_gen_per_text=int(n_candidates),
) # [bs, 1, samples]
waveform = [
gr.make_waveform((16000, wave[0]), bg_image="bg.png") for wave in waveform
]
# waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))]
if len(waveform) == 1:
waveform = waveform[0]
return waveform
# iface = gr.Interface(fn=text2audio, inputs=[
# gr.Textbox(value="A man is speaking in a huge room", max_lines=1),
# gr.Slider(2.5, 10, value=5, step=2.5),
# gr.Slider(0, 5, value=2.5, step=0.5),
# gr.Number(value=42)
# ], outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")],
# allow_flagging="never"
# )
# iface.launch(share=True)
css = """
a {
color: inherit;
text-decoration: underline;
}
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: #000000;
background: #000000;
}
input[type='range'] {
accent-color: #000000;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
#container-advanced-btns{
display: flex;
flex-wrap: wrap;
justify-content: space-between;
align-items: center;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
margin-top: 10px;
margin-left: auto;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
}
#generated_id{
min-height: 700px
}
#setting_id{
margin-bottom: 12px;
text-align: center;
font-weight: 900;
}
"""
iface = gr.Blocks(css=css)
with iface:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
AudioLDM: Text-to-Audio Generation with Latent Diffusion Models
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
<a href="https://arxiv.org/abs/2301.12503">[Paper]</a> <a href="https://audioldm.github.io/">[Project page]</a>
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
############# Input
textbox = gr.Textbox(
value="A hammer is hitting a wooden surface",
max_lines=1,
label="Input your text here. Please ensure it is descriptive and of moderate length.",
elem_id="prompt-in",
)
with gr.Accordion("Click to modify detailed configurations", open=False):
seed = gr.Number(
value=42,
label="Change this value (any integer number) will lead to a different generation result.",
)
duration = gr.Slider(
2.5, 10, value=5, step=2.5, label="Duration (seconds)"
)
guidance_scale = gr.Slider(
0,
5,
value=2.5,
step=0.5,
label="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)",
)
n_candidates = gr.Slider(
1,
5,
value=3,
step=1,
label="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation",
)
model_name = gr.Dropdown(
["audioldm-s-full", "audioldm-l-full", "audioldm-s-full-v2","audioldm-m-text-ft", "audioldm-s-text-ft", "audioldm-m-full"], value="audioldm-m-full", label="Choose the model to use. audioldm-m-text-ft and audioldm-s-text-ft are recommanded. -s- means small, -m- means medium and -l- means large",
)
############# Output
# outputs=gr.Audio(label="Output", type="numpy")
outputs = gr.Video(label="Output", elem_id="output-video")
# with gr.Group(elem_id="container-advanced-btns"):
# # advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
# with gr.Group(elem_id="share-btn-container"):
# community_icon = gr.HTML(community_icon_html, visible=False)
# loading_icon = gr.HTML(loading_icon_html, visible=False)
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
# outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")]
btn = gr.Button("Submit").style(full_width=True)
# with gr.Group(elem_id="share-btn-container", visible=False):
# community_icon = gr.HTML(community_icon_html)
# loading_icon = gr.HTML(loading_icon_html)
# share_button = gr.Button("Share to community", elem_id="share-btn")
btn.click(
text2audio,
inputs=[textbox, duration, guidance_scale, seed, n_candidates, model_name],
outputs=[outputs],
)
# share_button.click(None, [], [], _js=share_js)
gr.HTML(
"""
<div class="footer" style="text-align: center; max-width: 700px; margin: 0 auto;">
<p>Follow the latest update of AudioLDM on our<a href="https://github.com/haoheliu/AudioLDM" style="text-decoration: underline;" target="_blank"> Github repo</a>
</p>
<br>
<p>Model by <a href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe Liu</a></p>
<br>
</div>
"""
)
# gr.Examples(
# [
# ["A hammer is hitting a wooden surface", 5, 2.5, 45, 3, "audioldm-s-full"],
# [
# "Peaceful and calming ambient music with singing bowl and other instruments.",
# 5,
# 2.5,
# 45,
# 3,
# "audioldm-s-full"
# ],
# ["A man is speaking in a small room.", 5, 2.5, 45, 3, "audioldm-s-full"],
# ["A female is speaking followed by footstep sound", 5, 2.5, 45, 3, "audioldm-s-full"],
# [
# "Wooden table tapping sound followed by water pouring sound.",
# 5,
# 2.5,
# 45,
# 3,
# "audioldm-s-full"
# ],
# ],
# fn=text2audio,
# inputs=[textbox, duration, guidance_scale, seed, n_candidates, model_name],
# outputs=[outputs],
# cache_examples=True,
# )
with gr.Accordion("Additional information", open=False):
gr.HTML(
"""
<div class="acknowledgments">
<p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>, <a href="https://freesound.org/">Freesound</a> and <a href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo based on the <a href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK copyright exception</a> of data for academic research. </p>
</div>
"""
)
# <p>This demo is strictly for research demo purpose only. For commercial use please <a href="[email protected]">contact us</a>.</p>
iface.queue(concurrency_count=3)
# iface.launch(debug=True)
iface.launch(debug=True, share=False)