-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsde_lib.py
255 lines (213 loc) · 8.45 KB
/
sde_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import abc
import numpy as np
from jax import numpy as jnp
import jax
from distribution import UniformDistribution, Wrapped
class Mixture(abc.ABC):
def __init__(self, manifold, beta_schedule, prior_type='unif', **kwargs):
"""Base Mixture"""
super().__init__()
self.manifold = manifold
self.beta_schedule = beta_schedule
self.t0 = beta_schedule.t0
self.tf = beta_schedule.tf
self.prior_type = prior_type
self.kwargs = kwargs
def time_scale(self, t):
scale = self.beta_schedule.rescale_t_delta(t, self.tf)
return self.beta_schedule.beta_t(t) / scale
def diffusion(self, x, t):
beta_t = self.beta_schedule.beta_t(t)
return jnp.sqrt(beta_t)
@property
def prior(self):
if self.prior_type == 'unif':
return UniformDistribution(self.manifold)
elif self.prior_type == 'wrapped':
return Wrapped(
scale=self.kwargs['scale'],
batch_dims=self.kwargs['batch_dims'],
mean_type=self.kwargs['mean_type'],
manifold=self.manifold
)
elif self.prior_type == 'data':
# NOTE: should be the actual data distribution,
# but do not need to be implemented
return None
else:
return None
def importance_cum_weight(self, t, eps):
if 'Linear' in self.beta_schedule.__class__.__name__:
#NOTE: Should use linear beta schedule
if self.beta_schedule._beta == 0:
return t / self.beta_schedule.beta_0
else:
Z = jnp.log(
self.beta_schedule.beta_t(t) / self.beta_schedule.beta_t(self.t0+eps)
)
return Z / self.beta_schedule._beta
else:
raise NotImplementedError(f'BetaSchedule not implemented.')
def sample_importance_weighted_time(self, rng, shape, eps, steps=100):
Z = self.importance_cum_weight(self.tf-eps, eps=eps)
quantile = jax.random.uniform(rng, shape, minval=0, maxval=Z)
lb = jnp.ones_like(quantile) * (self.t0+eps)
ub = jnp.ones_like(quantile) * (self.tf-eps)
def bisection_func(carry, idx):
lb, ub = carry
mid = (lb + ub) / 2.
value = self.importance_cum_weight(mid, eps=eps)
lb = jnp.where(value <= quantile, mid, lb)
ub = jnp.where(value <= quantile, ub, mid)
return (lb, ub), idx
(lb, ub), _ = jax.lax.scan(bisection_func, (lb, ub), jnp.arange(0, steps))
return (lb + ub) / 2.
class DiffusionMixture(Mixture):
def __init__(
self, manifold, beta_schedule, prior_type='unif',
drift_scale=1.0, mix_type='log',
**kwargs
):
"""Diffusion Mixture"""
super().__init__(manifold, beta_schedule, prior_type, **kwargs)
self.drift_scale = drift_scale
self.mix_type = mix_type
def bridge(self, dest):
bparams = {
'manifold': self.manifold,
'beta_schedule': self.beta_schedule,
'dest': dest,
'drift_scale': self.drift_scale
}
if self.mix_type == 'log':
return BrownianBridge(**bparams, **self.kwargs)
elif 'spec' in self.mix_type:
return SpectralBridge(**bparams, **self.kwargs)
else:
raise NotImplementedError(f'Bridge type: {self.mix_type} not implemented.')
def get_drift_fn(self, model, params, states, return_state=False):
def drift_fn(y, t, rng=None):
drift, new_state = model.apply(params, states, rng, y=y, t=t)
if return_state:
return drift, new_state
else:
return drift
return drift_fn
def probability_ode(self, driftf, driftb):
return BackwardProbabilityFlowODE(
self.manifold, driftf, driftb, self.t0, self.tf
)
def rev(self):
# prior of the reverse should be the data distribution
return DiffusionMixture(
self.manifold,
self.beta_schedule.reverse(),
prior_type='data',
drift_scale=self.drift_scale,
mix_type=self.mix_type,
**self.kwargs
)
def approx(self, fdrift_fn, bdrift_fn, use_pode):
return ApproxMixture(
self.manifold,
self.beta_schedule,
self.prior_type,
fdrift_fn,
bdrift_fn,
use_pode,
**self.kwargs
)
class Bridge(abc.ABC):
def __init__(self, manifold, beta_schedule, dest, drift_scale):
self.manifold = manifold
self.beta_schedule = beta_schedule
self.t0 = beta_schedule.t0
self.tf = beta_schedule.tf
self.dest = dest
self.drift_scale = drift_scale
def time_scale(self, t):
scale = self.beta_schedule.rescale_t_delta(t, self.tf)
return self.beta_schedule.beta_t(t) / scale
# Time-scaled drift
def drift(self, x, t):
drift = self.drift_before_scale(x, t)
coeff = self.time_scale(t) * self.drift_scale
return jnp.einsum("...i,...->...i", drift, coeff)
def diffusion(self, x, t):
beta_t = self.beta_schedule.beta_t(t)
return jnp.sqrt(beta_t)
def coefficients(self, x, t):
return self.drift(x, t), self.diffusion(x, t)
@abc.abstractmethod
def drift_before_scale(self, x, t):
raise NotImplementedError()
class BrownianBridge(Bridge):
def __init__(self, manifold, beta_schedule, dest, drift_scale, **kwargs):
super().__init__(manifold, beta_schedule, dest, drift_scale)
def drift_before_scale(self, x, t):
return self.manifold.log(point=self.dest, base_point=x)
class SpectralBridge(Bridge):
def __init__(self, manifold, beta_schedule, dest, drift_scale, **kwargs):
super().__init__(manifold, beta_schedule, dest, drift_scale)
self.wtype = kwargs.get('wtype', 'biharmonic')
self.tau = kwargs.get('tau', 0.25)
self.dest_eig = manifold.eig_fn(dest)
self.weight = self.weighting_fn(manifold.eig_val)
def weighting_fn(self, z):
if self.wtype == 'biharmonic':
return 1./z**2
elif 'inv' in self.wtype:
pow = -float(self.wtype.split('_')[-1])
return jnp.abs(z)**pow
elif self.wtype == 'diff':
return jnp.exp(-2 * self.tau * z)
else:
raise NotImplementedError(f'Weighting function {self.wtype} not implemented.')
def dist(self, z):
coeff = self.dest_eig - self.manifold.eig_fn(z)
return (self.weight * coeff**2).sum(-1)
def drift_before_scale(self, x, t):
dist, vjp_fn = jax.vjp(lambda y: self.dist(y), x)
grad = vjp_fn(jnp.ones_like(dist))[0]
sqnorm = self.manifold.metric.squared_norm(grad, x).clip(min=1e-20)
# Determine the sign and scale
drift = -2 * jnp.einsum('...i,...->...i', grad, dist/sqnorm)
return drift
# Data -> Prior
class BackwardProbabilityFlowODE:
def __init__(self, manifold, driftf, driftb, t0, tf):
self.manifold = manifold
self.driftf = driftf # Prior -> Data
self.driftb = driftb # Data -> Prior
self.t0 = t0
self.tf = tf
def coefficients(self, x, t):
fdrift = self.driftf(x, self.tf-t)
bdrift = self.driftb(x, t)
scaled_score_fn = fdrift + bdrift
ode_drift = bdrift - 0.5 * scaled_score_fn
return ode_drift, jnp.zeros_like(t)
class ApproxMixture(Mixture):
def __init__(
self, manifold, beta_schedule, prior_type='unif',
fdrift_fn=None, bdrift_fn=None, use_pode=False, **kwargs
):
"""Approximated Diffusion Mixture"""
super().__init__(manifold, beta_schedule, prior_type, **kwargs)
self.approx = True
self.fdrift_fn = fdrift_fn
self.bdrift_fn = bdrift_fn
self.use_pode = use_pode
def diffusion(self, x, t):
beta_t = self.beta_schedule.beta_t(t)
return jnp.sqrt(beta_t) if not self.use_pode else jnp.zeros_like(t)
def drift(self, x, t):
drift = self.fdrift_fn(x, t)
if self.use_pode:
scaled_score_fn = drift + self.bdrift_fn(x, self.tf-t)
drfit = drift - 0.5 * scaled_score_fn
return drift
def coefficients(self, x, t):
return self.drift(x, t), self.diffusion(x, t)
def prior_sampling(self, rng, shape):
return self.prior.sample(rng, shape)