-
-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathREADME.Rmd
444 lines (349 loc) · 15 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
---
output: rmarkdown::github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(collapse=TRUE, comment="##", fig.retina=2, fig.path = "README_figs/README-")
```
[![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/0.1.0/active.svg)](http://www.repostatus.org/#active)
[![Travis-CI Build Status](https://travis-ci.org/hrbrmstr/ggalt.svg?branch=master)](https://travis-ci.org/hrbrmstr/ggalt)
[![AppVeyor Build Status](https://ci.appveyor.com/api/projects/status/github/hrbrmstr/ggalt?branch=master&svg=true)](https://ci.appveyor.com/project/hrbrmstr/ggalt)
[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/ggalt)](https://CRAN.R-project.org/package=ggalt)
![downloads](http://cranlogs.r-pkg.org/badges/grand-total/ggalt)
`ggalt` : Extra Coordinate Systems, Geoms, Statistical Transformations, Scales & Fonts for 'ggplot2'
A compendium of 'geoms', 'coords', 'stats', scales and fonts for 'ggplot2', including splines, 1d and 2d densities, univariate average shifted histograms, a new map coordinate system based on the 'PROJ.4'-library and the 'StateFace' open source font 'ProPublica'.
The following functions are implemented:
- `geom_ubar` : Uniform width bar charts
- `geom_horizon` : Horizon charts (modified from <https://github.com/AtherEnergy/ggTimeSeries>)
- `coord_proj` : Like `coord_map`, only better (prbly shld use this with `geom_cartogram` as `geom_map`'s new defaults are ugh)
- `geom_xspline` : Connect control points/observations with an X-spline
- `stat_xspline` : Connect control points/observations with an X-spline
- `geom_bkde` : Display a smooth density estimate (uses `KernSmooth::bkde`)
- `geom_stateface`: Use ProPublica's StateFace font in ggplot2 plots
- `geom_bkde2d` : Contours from a 2d density estimate. (uses `KernSmooth::bkde2D`)
- `stat_bkde` : Display a smooth density estimate (uses `KernSmooth::bkde`)
- `stat_bkde2d` : Contours from a 2d density estimate. (uses `KernSmooth::bkde2D`)
- `stat_ash` : Compute and display a univariate averaged shifted histogram (polynomial kernel) (uses `ash::ash1`/`ash::bin1`)
- `geom_encircle`: Automatically enclose points in a polygon
- `byte_format`: + helpers. e.g. turn `10000` into `10 Kb`
- `geom_lollipop()`: Dead easy lollipops (horizontal or vertical)
- `geom_dumbbell()` : Dead easy dumbbell plots
- `stat_stepribbon()` : Step ribbons
- `annotation_ticks()` : Add minor ticks to identity, exp(1) and exp(10) axis scales independently of each other.
- `geom_spikelines()` : Instead of geom_vline and geom_hline a pair of segments that originate from same c(x,y) are drawn to the respective axes.
- plotly integration for a few of the ^^ geoms
### Installation
```{r eval=FALSE}
# you'll want to see the vignettes, trust me
install.packages("ggplot2")
install.packages("ggalt")
# OR: devtools::install_github("hrbrmstr/ggalt")
```
```{r echo=FALSE, message=FALSE, warning=FALSE, error=FALSE}
options(width=120)
```
### Usage
```{r}
library(ggplot2)
library(gridExtra)
library(ggalt)
# current verison
packageVersion("ggalt")
set.seed(1492)
dat <- data.frame(x=c(1:10, 1:10, 1:10),
y=c(sample(15:30, 10), 2*sample(15:30, 10), 3*sample(15:30, 10)),
group=factor(c(rep(1, 10), rep(2, 10), rep(3, 10)))
)
```
### Horzon Chart
Example carved from: <https://github.com/halhen/viz-pub/blob/master/sports-time-of-day/2_gen_chart.R>
```{r horizon, message=FALSE, warning=FALSE, fig.height=9.5, fig.width=9.5}
library(hrbrthemes)
library(ggalt)
library(tidyverse)
sports <- read_tsv("https://github.com/halhen/viz-pub/raw/master/sports-time-of-day/activity.tsv")
sports %>%
group_by(activity) %>%
filter(max(p) > 3e-04,
!grepl('n\\.e\\.c', activity)) %>%
arrange(time) %>%
mutate(p_peak = p / max(p),
p_smooth = (lag(p_peak) + p_peak + lead(p_peak)) / 3,
p_smooth = coalesce(p_smooth, p_peak)) %>%
ungroup() %>%
do({
rbind(.,
filter(., time == 0) %>%
mutate(time = 24*60))
}) %>%
mutate(time = ifelse(time < 3 * 60, time + 24 * 60, time)) %>%
mutate(activity = reorder(activity, p_peak, FUN=which.max)) %>%
arrange(activity) %>%
mutate(activity.f = reorder(as.character(activity), desc(activity))) -> sports
sports <- mutate(sports, time2 = time/60)
ggplot(sports, aes(time2, p_smooth)) +
geom_horizon(bandwidth=0.1) +
facet_grid(activity.f~.) +
scale_x_continuous(expand=c(0,0), breaks=seq(from = 3, to = 27, by = 3), labels = function(x) {sprintf("%02d:00", as.integer(x %% 24))}) +
viridis::scale_fill_viridis(name = "Activity relative to peak", discrete=TRUE,
labels=scales::percent(seq(0, 1, 0.1)+0.1)) +
labs(x=NULL, y=NULL, title="Peak time of day for sports and leisure",
subtitle="Number of participants throughout the day compared to peak popularity.\nNote the morning-and-evening everyday workouts, the midday hobbies,\nand the evenings/late nights out.") +
theme_ipsum_rc(grid="") +
theme(panel.spacing.y=unit(-0.05, "lines")) +
theme(strip.text.y = element_text(hjust=0, angle=360)) +
theme(axis.text.y=element_blank())
```
### Splines!
```{r splines}
ggplot(dat, aes(x, y, group=group, color=group)) +
geom_point() +
geom_line()
ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point() +
geom_line() +
geom_smooth(se=FALSE, linetype="dashed", size=0.5)
ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(size=0.5)
ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(spline_shape=-0.4, size=0.5)
ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(spline_shape=0.4, size=0.5)
ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(spline_shape=1, size=0.5)
ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(spline_shape=0, size=0.5)
ggplot(dat, aes(x, y, group=group, color=factor(group))) +
geom_point(color="black") +
geom_smooth(se=FALSE, linetype="dashed", size=0.5) +
geom_xspline(spline_shape=-1, size=0.5)
```
#### Alternate (better) density plots
```{r bkde_ash}
# bkde
data(geyser, package="MASS")
ggplot(geyser, aes(x=duration)) +
stat_bkde(alpha=1/2)
ggplot(geyser, aes(x=duration)) +
geom_bkde(alpha=1/2)
ggplot(geyser, aes(x=duration)) +
stat_bkde(bandwidth=0.25)
ggplot(geyser, aes(x=duration)) +
geom_bkde(bandwidth=0.25)
set.seed(1492)
dat <- data.frame(cond = factor(rep(c("A","B"), each=200)),
rating = c(rnorm(200),rnorm(200, mean=.8)))
ggplot(dat, aes(x=rating, color=cond)) + geom_bkde(fill="#00000000")
ggplot(dat, aes(x=rating, fill=cond)) + geom_bkde(alpha=0.3)
# ash
set.seed(1492)
dat <- data.frame(x=rnorm(100))
grid.arrange(ggplot(dat, aes(x)) + stat_ash(),
ggplot(dat, aes(x)) + stat_bkde(),
ggplot(dat, aes(x)) + stat_density(),
nrow=3)
cols <- RColorBrewer::brewer.pal(3, "Dark2")
ggplot(dat, aes(x)) +
stat_ash(alpha=1/3, fill=cols[3]) +
stat_bkde(alpha=1/3, fill=cols[2]) +
stat_density(alpha=1/3, fill=cols[1]) +
geom_rug() +
labs(x=NULL, y="density/estimate") +
scale_x_continuous(expand=c(0,0)) +
theme_bw() +
theme(panel.grid=element_blank()) +
theme(panel.border=element_blank())
```
### Alternate 2D density plots
```{r bkde2d}
m <- ggplot(faithful, aes(x = eruptions, y = waiting)) +
geom_point() +
xlim(0.5, 6) +
ylim(40, 110)
m + geom_bkde2d(bandwidth=c(0.5, 4))
m + stat_bkde2d(bandwidth=c(0.5, 4), aes(fill = ..level..), geom = "polygon")
```
### `coord_proj` LIVES! (still needs a teensy bit of work)
```{r coord_proj}
world <- map_data("world")
world <- world[world$region != "Antarctica",]
gg <- ggplot()
gg <- gg + geom_cartogram(data=world, map=world,
aes(x=long, y=lat, map_id=region))
gg <- gg + coord_proj("+proj=wintri")
gg
```
### ProPublica StateFace
```{r stateface}
# Run show_stateface() to see the location of the TTF StateFace font
# You need to install it for it to work
set.seed(1492)
dat <- data.frame(state=state.abb,
x=sample(100, 50),
y=sample(100, 50),
col=sample(c("#b2182b", "#2166ac"), 50, replace=TRUE),
sz=sample(6:15, 50, replace=TRUE),
stringsAsFactors=FALSE)
gg <- ggplot(dat, aes(x=x, y=y))
gg <- gg + geom_stateface(aes(label=state, color=col, size=sz))
gg <- gg + scale_color_identity()
gg <- gg + scale_size_identity()
gg
```
### Encircling points automagically
```{r encircle}
d <- data.frame(x=c(1,1,2),y=c(1,2,2)*100)
gg <- ggplot(d,aes(x,y))
gg <- gg + scale_x_continuous(expand=c(0.5,1))
gg <- gg + scale_y_continuous(expand=c(0.5,1))
gg + geom_encircle(s_shape=1, expand=0) + geom_point()
gg + geom_encircle(s_shape=1, expand=0.1, colour="red") + geom_point()
gg + geom_encircle(s_shape=0.5, expand=0.1, colour="purple") + geom_point()
gg + geom_encircle(data=subset(d, x==1), colour="blue", spread=0.02) +
geom_point()
gg +geom_encircle(data=subset(d, x==2), colour="cyan", spread=0.04) +
geom_point()
gg <- ggplot(mpg, aes(displ, hwy))
gg + geom_encircle(data=subset(mpg, hwy>40)) + geom_point()
ss <- subset(mpg,hwy>31 & displ<2)
gg + geom_encircle(data=ss, colour="blue", s_shape=0.9, expand=0.07) +
geom_point() + geom_point(data=ss, colour="blue")
```
### Step ribbons
```{r stepribbon}
x <- 1:10
df <- data.frame(x=x, y=x+10, ymin=x+7, ymax=x+12)
gg <- ggplot(df, aes(x, y))
gg <- gg + geom_ribbon(aes(ymin=ymin, ymax=ymax),
stat="stepribbon", fill="#b2b2b2")
gg <- gg + geom_step(color="#2b2b2b")
gg
gg <- ggplot(df, aes(x, y))
gg <- gg + geom_ribbon(aes(ymin=ymin, ymax=ymax),
stat="stepribbon", fill="#b2b2b2",
direction="vh")
gg <- gg + geom_step(color="#2b2b2b")
gg
```
### Lollipop charts
```{r lollipop}
df <- read.csv(text="category,pct
Other,0.09
South Asian/South Asian Americans,0.12
Interngenerational/Generational,0.21
S Asian/Asian Americans,0.25
Muslim Observance,0.29
Africa/Pan Africa/African Americans,0.34
Gender Equity,0.34
Disability Advocacy,0.49
European/European Americans,0.52
Veteran,0.54
Pacific Islander/Pacific Islander Americans,0.59
Non-Traditional Students,0.61
Religious Equity,0.64
Caribbean/Caribbean Americans,0.67
Latino/Latina,0.69
Middle Eastern Heritages and Traditions,0.73
Trans-racial Adoptee/Parent,0.76
LBGTQ/Ally,0.79
Mixed Race,0.80
Jewish Heritage/Observance,0.85
International Students,0.87", stringsAsFactors=FALSE, sep=",", header=TRUE)
library(ggplot2)
library(ggalt)
library(scales)
gg <- ggplot(df, aes(y=reorder(category, pct), x=pct))
gg <- gg + geom_lollipop(point.colour="steelblue", point.size=2, horizontal=TRUE)
gg <- gg + scale_x_continuous(expand=c(0,0), labels=percent,
breaks=seq(0, 1, by=0.2), limits=c(0, 1))
gg <- gg + labs(x=NULL, y=NULL,
title="SUNY Cortland Multicultural Alumni survey results",
subtitle="Ranked by race, ethnicity, home land and orientation\namong the top areas of concern",
caption="Data from http://stephanieevergreen.com/lollipop/")
gg <- gg + theme_minimal(base_family="Arial Narrow")
gg <- gg + theme(panel.grid.major.y=element_blank())
gg <- gg + theme(panel.grid.minor=element_blank())
gg <- gg + theme(axis.line.y=element_line(color="#2b2b2b", size=0.15))
gg <- gg + theme(axis.text.y=element_text(margin=margin(r=0, l=0)))
gg <- gg + theme(plot.margin=unit(rep(30, 4), "pt"))
gg <- gg + theme(plot.title=element_text(face="bold"))
gg <- gg + theme(plot.subtitle=element_text(margin=margin(b=10)))
gg <- gg + theme(plot.caption=element_text(size=8, margin=margin(t=10)))
gg
```
```{r dumbbell, message=FALSE}
library(dplyr)
library(tidyr)
library(scales)
library(ggplot2)
library(ggalt) # devtools::install_github("hrbrmstr/ggalt")
health <- read.csv("https://rud.is/dl/zhealth.csv", stringsAsFactors=FALSE,
header=FALSE, col.names=c("pct", "area_id"))
areas <- read.csv("https://rud.is/dl/zarea_trans.csv", stringsAsFactors=FALSE, header=TRUE)
health %>%
mutate(area_id=trunc(area_id)) %>%
arrange(area_id, pct) %>%
mutate(year=rep(c("2014", "2013"), 26),
pct=pct/100) %>%
left_join(areas, "area_id") %>%
mutate(area_name=factor(area_name, levels=unique(area_name))) -> health
setNames(bind_cols(filter(health, year==2014), filter(health, year==2013))[,c(4,1,5)],
c("area_name", "pct_2014", "pct_2013")) -> health
gg <- ggplot(health, aes(x=pct_2014, xend=pct_2013, y=area_name, group=area_name))
gg <- gg + geom_dumbbell(colour="#a3c4dc", size=1.5, colour_xend="#0e668b",
dot_guide=TRUE, dot_guide_size=0.15)
gg <- gg + scale_x_continuous(label=percent)
gg <- gg + labs(x=NULL, y=NULL)
gg <- gg + theme_bw()
gg <- gg + theme(plot.background=element_rect(fill="#f7f7f7"))
gg <- gg + theme(panel.background=element_rect(fill="#f7f7f7"))
gg <- gg + theme(panel.grid.minor=element_blank())
gg <- gg + theme(panel.grid.major.y=element_blank())
gg <- gg + theme(panel.grid.major.x=element_line())
gg <- gg + theme(axis.ticks=element_blank())
gg <- gg + theme(legend.position="top")
gg <- gg + theme(panel.border=element_blank())
gg
```
```{r dumbbell2, message=FALSE, fig.width=7, fig.height=2.5}
library(hrbrthemes)
df <- data.frame(trt=LETTERS[1:5], l=c(20, 40, 10, 30, 50), r=c(70, 50, 30, 60, 80))
ggplot(df, aes(y=trt, x=l, xend=r)) +
geom_dumbbell(size=3, color="#e3e2e1",
colour_x = "#5b8124", colour_xend = "#bad744",
dot_guide=TRUE, dot_guide_size=0.25) +
labs(x=NULL, y=NULL, title="ggplot2 geom_dumbbell with dot guide") +
theme_ipsum_rc(grid="X") +
theme(panel.grid.major.x=element_line(size=0.05))
```
```{r annoticks, message=FALSE, fig.width=7, fig.height=2.5}
p <- ggplot(msleep, aes(bodywt, brainwt)) + geom_point()
# add identity scale minor ticks on y axis
p + annotation_ticks(sides = 'l')
# add identity scale minor ticks on x,y axis
p + annotation_ticks(sides = 'lb')
# log10 scale
p1 <- p + scale_x_log10()
# add minor ticks on both scales
p1 + annotation_ticks(sides = 'lb', scale = c('identity','log10'))
```
```{r spikelines, message=FALSE, fig.width=7, fig.height=7}
mtcars$name <- rownames(mtcars)
p <- ggplot(data = mtcars, aes(x=mpg,y=disp)) + geom_point()
p +
geom_spikelines(data = mtcars[mtcars$carb==4,],aes(colour = factor(gear)), linetype = 2) +
ggrepel::geom_label_repel(data = mtcars[mtcars$carb==4,],aes(label = name))
```
### Code of Conduct
Please note that this project is released with a [Contributor Code of Conduct](CONDUCT.md).
By participating in this project you agree to abide by its terms.