-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
161 lines (139 loc) · 4.97 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
from functools import partial
import torch
from unsloth import FastLanguageModel
from datasets import load_dataset, Dataset
from trl import SFTTrainer
from transformers import TrainingArguments
from src.fim import ConstantLengthDataset, chars_token_ratio
from src.utils import get_model, generate_modelfile
import settings
def main():
# Load the model
model_name, model_path = get_model(settings.PARAM_SIZE)
model, tokenizer = FastLanguageModel.from_pretrained(
model_path,
max_seq_length=settings.MAX_SEQ_LENGTH,
dtype=settings.DTYPE,
load_in_4bit=True,
)
# Load PEFT model
model = FastLanguageModel.get_peft_model(
model,
r=settings.LORA_R,
lora_alpha=settings.LORA_ALPHA,
lora_dropout=settings.LORA_DROPOUT,
use_gradient_checkpointing="unsloth",
random_state=settings.SEED,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
],
)
# Load and prepare dataset
dataset = load_dataset(
settings.DATASET,
data_dir="data",
split="train",
)
valid_data = dataset.take(400)
train_data = dataset.skip(400)
train_data = train_data.shuffle(seed=settings.SEED)
chars_per_token = chars_token_ratio(train_data, tokenizer, settings.DATA_COLUMN)
train_data.start_iteration = 0
train_dataset = ConstantLengthDataset(
tokenizer,
train_data,
infinite=False,
seq_length=settings.MAX_SEQ_LENGTH,
chars_per_token=chars_per_token,
content_field=settings.DATA_COLUMN,
fim_rate=settings.FIM_RATE,
fim_spm_rate=settings.FIM_SPM_RATE,
seed=settings.SEED,
)
eval_dataset = ConstantLengthDataset(
tokenizer,
valid_data,
infinite=False,
seq_length=settings.MAX_SEQ_LENGTH,
chars_per_token=chars_per_token,
content_field=settings.DATA_COLUMN,
fim_rate=settings.FIM_RATE,
fim_spm_rate=settings.FIM_SPM_RATE,
seed=settings.SEED,
)
# Workaround for using ConstantLengthDataset with Unsloth
def gen_from_iterable_dataset(iterable_ds):
yield from iterable_ds
train_dataset = Dataset.from_generator(
partial(gen_from_iterable_dataset, train_dataset), split="train"
)
eval_dataset = Dataset.from_generator(
partial(gen_from_iterable_dataset, eval_dataset), split="validation"
)
# Setup output dir
if settings.RESUME_FROM_CHECKPOINT:
output_dir = settings.RESUME_FROM_CHECKPOINT
else:
os.makedirs(settings.BASE_OUTPUT_DIR, exist_ok=True)
run_number = len(os.listdir(settings.BASE_OUTPUT_DIR))
output_dir = os.path.join(settings.BASE_OUTPUT_DIR, f"run{run_number}")
os.makedirs(output_dir, exist_ok=True)
# Training arguments
training_args = TrainingArguments(
output_dir=output_dir,
dataloader_drop_last=True,
eval_strategy="steps",
save_strategy="steps",
report_to="tensorboard",
max_steps=settings.MAX_STEPS,
eval_steps=settings.EVAL_FREQ,
save_steps=settings.SAVE_FREQ,
logging_steps=settings.LOG_FREQ,
per_device_train_batch_size=settings.BATCH_SIZE,
per_device_eval_batch_size=settings.BATCH_SIZE,
learning_rate=settings.LR,
lr_scheduler_type=settings.LR_SCHEDULER_TYPE,
warmup_steps=settings.NUM_WARMUP_STEPS,
gradient_accumulation_steps=settings.GR_ACC_STEPS,
gradient_checkpointing=True,
fp16=not torch.cuda.is_bf16_supported(),
bf16=torch.cuda.is_bf16_supported(),
weight_decay=settings.WEIGHT_DECAY,
include_tokens_per_second=True,
)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
max_seq_length=settings.MAX_SEQ_LENGTH,
args=training_args,
)
if settings.RESUME_FROM_CHECKPOINT:
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
# Export the model and save to ollama
final_output_dir = os.path.join(output_dir, "final")
os.makedirs(final_output_dir, exist_ok=True)
model.save_pretrained(final_output_dir)
tokenizer.save_pretrained(final_output_dir)
# Save gguf model
model.save_pretrained_gguf(final_output_dir, tokenizer, quantization_method="q4_k_m")
# Rename the output files
os.rename(
os.path.join(final_output_dir, f"unsloth.{settings.GGUF_QUANT_METHOD.upper()}.gguf"),
os.path.join(final_output_dir, f"model_{settings.GGUF_QUANT_METHOD}.gguf"),
)
print(f"Renamed: unsloth.{settings.GGUF_QUANT_METHOD.upper()}.gguf -> model_{settings.GGUF_QUANT_METHOD}.gguf")
# Generate a Modelfile for ollama
generate_modelfile(model_name, settings.GGUF_QUANT_METHOD, final_output_dir)
if __name__ == "__main__":
main()