-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate.py
51 lines (37 loc) · 1.74 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import logging
import torch
import hydra
from omegaconf import DictConfig, OmegaConf
from src.utils.logging import get_pl_logger
log = logging.getLogger(__name__)
@hydra.main(version_base=None, config_path='configs', config_name='conf')
def main(cfg: DictConfig) -> None:
log.info(f'Conf: \n{OmegaConf.to_yaml(cfg)}')
log.info(f'Instantiating datamodule <{cfg.datamodule._target_}>')
datamodule = hydra.utils.instantiate(cfg.datamodule)
log.info(f'Instantiated datamodule: {datamodule}')
log.info(f'Instantiating litmodel <{cfg.litmodel._target_}>')
litmodel = hydra.utils.instantiate(cfg.litmodel)
log.info(f'Instantiated litmodel: {litmodel}')
log.info('Instantiating callbacks...')
callbacks = [v for k, v in hydra.utils.instantiate(cfg.callbacks).items()]
log.info(f'Instantiated callbacks: {callbacks}')
log.info('Instantiating logger...')
logger = get_pl_logger(cfg)
log.info(f'Instantiated logger: {logger}')
log.info(f'Instantiating trainer <{cfg.trainer._target_}>')
trainer = hydra.utils.instantiate(cfg.trainer, callbacks=callbacks, logger=logger)
log.info(f'Instantiated trainer: {trainer}')
# load pre-trained model
model_state_dict = None
if cfg.trainer.resume_from_checkpoint.endswith('.ckpt'):
model_state_dict = torch.load(
cfg.trainer.resume_from_checkpoint)['state_dict']
elif cfg.trainer.resume_from_checkpoint.endswith('.pth'):
model_state_dict = torch.load(cfg.trainer.resume_from_checkpoint,
map_location='cuda:0')
if model_state_dict is not None:
litmodel.load_state_dict(model_state_dict, strict=False)
trainer.validate(litmodel, datamodule)
if __name__ == '__main__':
main()