-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
260 lines (208 loc) · 8.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
""" Main """
import warnings
warnings.filterwarnings('ignore')
import argparse
import os
import shutil
import time
import numpy as np
import pandas as pd
import tensorly as tl
from termcolor import colored
import dismo
import data.googletrends as gtrends
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import minmax_scale
parser = argparse.ArgumentParser()
parser.add_argument('--outdir', type=str, default='out/tmp')
# Model options
parser.add_argument('--n_interaction', type=int, default=4)
parser.add_argument('--n_seasonality', type=int, default=2)
parser.add_argument('--min_interaction', type=int, default=2)
parser.add_argument('--max_interaction', type=int, default=4)
parser.add_argument('--min_seasonality', type=int, default=2)
parser.add_argument('--max_seasonality', type=int, default=4)
parser.add_argument('--n_season', type=int, default=0)
parser.add_argument('--n_trial', type=int, default=5)
parser.add_argument('--max_time', type=float, default=10)
parser.add_argument('--max_iter', type=int, default=10)
parser.add_argument('--online_max_iter', type=int, default=5)
parser.add_argument('--interaction_type', type=str, default='full')
parser.add_argument('--use_self_interaction', action='store_true')
parser.add_argument('--disuse_carrying_capacity', action='store_false')
parser.add_argument('--non_negative_seasonality', action='store_true')
parser.add_argument('--update_seasonality', action='store_true')
parser.add_argument('--regime_shift', type=int, default=True)
parser.add_argument('--grid_search', type=int, default=False)
# Streaming options
parser.add_argument('--start_point', type=int, default=0)
parser.add_argument('--init_window_size', type=int, default=104)
parser.add_argument('--slide_window_size', type=int, default=52)
parser.add_argument('--report_step', type=int, default=4)
parser.add_argument('--max_forecast_step', type=int, default=4)
# Dataset options
parser.add_argument('--dataset', type=str, default='gtrends')
parser.add_argument('--minmax_scale', action='store_true')
# 1. GoogleTrends
parser.add_argument('--query', type=str, default='vod')
parser.add_argument('--geo_level', type=str, default='region')
parser.add_argument('--sampling_rate', type=str, default='W')
parser.add_argument('--start_date', type=str, default='2008-01-01')
parser.add_argument('--end_date', type=str, default='2021-01-01')
# 2. OnlineRetails
# Output options
parser.add_argument('--track_elapsed_time', action='store_true')
parser.add_argument('--track_grid_search', action='store_true')
args = parser.parse_args()
def make_outputdir(config):
path = config['outdir'] # root
if config['dataset'] == 'gtrends':
path = os.path.join(path,
config['dataset'],
config['query'],
config['geo_level'],
config['sampling_rate'])
# elif
if config['grid_search'] == True:
path = os.path.join(path, 'grid_search')
else:
path = os.path.join(path,
'n_interaction={}'.format(config['n_interaction']),
'n_seasonality={}'.format(config['n_seasonality']))
if config['regime_shift']:
path = os.path.join(path, 'regime_shift')
else:
path = os.path.join(path, 'no_regime_shift')
path = os.path.join(path, 'interaction_type='+config['interaction_type'])
return path
outdir = make_outputdir(vars(args))
if os.path.exists(outdir):
shutil.rmtree(outdir)
os.makedirs(args.outdir, exist_ok=True)
os.makedirs(outdir, exist_ok=True)
# save to a deep directory
args.outdir = outdir
print('output_path=', args.outdir)
if args.dataset == 'gtrends':
tts = gtrends.load_as_tensor(
query=args.query,
geo_level=args.geo_level,
sampling_rate=args.sampling_rate,
start_date=args.start_date,
end_date=args.end_date)
if args.minmax_scale:
print("MinMaxScale")
# tts = dismo.utils.MinMaxScaler().fit_transform(tts)
tts = minmax_scale(tts.reshape((-1, 1))).reshape(tts.shape)
model = dismo.DISMO(
tts.shape[1:],
minc=args.min_interaction,
maxc=args.max_interaction,
mins=args.min_seasonality,
maxs=args.max_seasonality,
n_season=args.n_season,
n_trial=args.n_trial,
max_time=args.max_time,
online_max_iter=args.online_max_iter,
interaction_type=args.interaction_type,
use_self_interaction=args.use_self_interaction,
normalize_ml_projection=False,
regime_shift=args.regime_shift,
use_carrying_capacity=args.disuse_carrying_capacity,
non_negative_seasonality=args.non_negative_seasonality,
init_complemenatry_matrices=args.update_seasonality)
print(model)
if args.init_window_size > 0:
init_tensor = tts[args.start_point:args.start_point+args.init_window_size]
else:
init_tensor = tts
if args.grid_search:
scores = model.grid_search(
init_tensor, t=args.start_point, max_iter=args.max_iter)
# if args.track_grid_search:
# save results
dismo.utils.plot_grid_search_result(
model, scores, args.outdir + '/result_grid_search.png',
title='Best set= ({}, {})'.format(model.c, model.s))
model.initialize(init_tensor,
t=args.start_point,
max_iter=args.max_iter)
else:
model.initialize(init_tensor,
c=args.n_interaction,
s=args.n_seasonality,
t=args.start_point,
max_iter=args.max_iter)
# Experimental settings
config = vars(args)
dismo.utils.saveas_json(args.outdir + "/config.json", config)
ts = args.start_point
dt = args.report_step
wd = args.slide_window_size
ls = args.max_forecast_step
ed = len(tts)
rec_df_list = []
pred_df_list = []
rec_intr_df_list = []
pred_intr_df_list = []
latent_seq_df_list = []
update_time_log = []
for t in range(ts, ed - wd - ls - dt, dt):
# extract current window
cur_tensor = tts[t:t+wd]
print('t=', t, t+wd, cur_tensor.shape)
# Online update & segmentation
tic = time.process_time()
model.update(cur_tensor, t=t)
toc = time.process_time() - tic
print(colored('Elapsed time={:.3f} sec.\n'.format(toc), 'blue'))
update_time_log.append(toc)
# perform forecasting
pred, pred_intr, latent_seq, theta = model.fit_predict(ls + dt, cur_tensor, t,
return_full_sequence=True,
return_latent_dynamics=True,
return_dynamics=True,
return_model=True)
# save predictions
rec_, pred = np.split(pred, [len(pred) - (ls + dt)])
rec_df = dismo.utils.pred2df(rec_, window_index=t)
pred_df = dismo.utils.pred2df(pred, window_index=t+wd)
rec_df_list.append(rec_df)
pred_df_list.append(pred_df)
try:
print('RMSE=', np.sqrt(mean_squared_error(
tts[t+wd+ls:t+wd+ls+dt].ravel(), # original
pred[-dt:].ravel() # predictions
)))
except:
pass
# save only interactions
rec_intr, pred_intr = np.split(pred_intr, [len(pred_intr) - (ls + dt)])
rec_intr_df = dismo.utils.pred2df(rec_intr, window_index=t)
pred_intr_df = dismo.utils.pred2df(pred_intr, window_index=t+wd) # window_id: end point of current window
rec_intr_df_list.append(rec_intr_df)
pred_intr_df_list.append(pred_intr_df)
# save latent sequences
latent_seq_df = dismo.utils.seq2df(latent_seq, window_index=t)
latent_seq_df_list.append(latent_seq_df)
# keep overwriting
# pd.concat(rec_df_list).to_csv(args.outdir + "/rec_.csv.gz", index=False,)
# pd.concat(pred_df_list).to_csv(args.outdir + "/pred.csv.gz", index=False)
# pd.concat(rec_intr_df_list).to_csv(args.outdir + '/rec_intr.csv.gz', index=False)
# pd.concat(pred_intr_df_list).to_csv(args.outdir + '/pred_intr.csv.gz', index=False)
# pd.concat(latent_seq_df_list).to_csv(args.outdir + '/latent_seq.csv.gz', index=False)
# Model parameters
# model.save(args.outdir)
# break
# continue
pd.concat(rec_df_list).to_csv(args.outdir + "/rec_.csv.gz", index=False)
pd.concat(pred_df_list).to_csv(args.outdir + "/pred.csv.gz", index=False)
pd.concat(rec_intr_df_list).to_csv(args.outdir + '/rec_intr.csv.gz', index=False)
pd.concat(pred_intr_df_list).to_csv(args.outdir + '/pred_intr.csv.gz', index=False)
pd.concat(latent_seq_df_list).to_csv(args.outdir + '/latent_seq.csv.gz', index=False)
# Model parameters
model.save(args.outdir)
# Results
pd.concat(rec_df_list).to_csv(args.outdir + "/rec_.csv.gz")
pd.concat(pred_df_list).to_csv(args.outdir + "/pred.csv.gz")
np.savetxt(args.outdir + '/update_time_log.txt.gz', update_time_log)