-
-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathexample.py
40 lines (32 loc) · 1.06 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
from gemini_torch.model import Gemini
# Initialize model with smaller dimensions
model = Gemini(
num_tokens=10000, # Reduced from 50432
max_seq_len=1024, # Reduced from 4096
dim=320, # Reduced from 1280
depth=8, # Reduced from 16
dim_head=32, # Reduced from 64
heads=6, # Reduced from 12
use_abs_pos_emb=False,
attn_flash=True,
attn_kv_heads=2,
qk_norm=True,
attn_qk_norm=True,
attn_qk_norm_dim_scale=True,
post_fusion_norm=True,
post_modal_transform_norm=True,
)
# Text shape: [batch, seq_len, dim]
text = torch.randint(0, 10000, (1, 1024)) # Reduced seq_len from 4096
# Img shape: [batch, channels, height, width]
img = torch.randn(1, 3, 64, 64) # Reduced height and width from 128
# Audio shape: [batch, audio_seq_len, dim]
audio = torch.randn(1, 32) # Reduced audio_seq_len from 64
# Video: [B, T, C, H, W]
video = torch.randn(1, 64, 3, 64, 64)
# Apply model to text and img
y, _ = model(text=text, img=img, audio=audio, video=video)
# Output shape: [batch, seq_len, dim]
print(y)
print(y.shape)