-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
141 lines (100 loc) · 4.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""Main to run TensorFlow models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import flags
import tensorflow as tf
from . import input_fn
from . import model
from . import util
FLAGS = flags.FLAGS
flags.DEFINE_enum('mode', None, ['train', 'eval'], 'Execution mode.')
flags.DEFINE_string('logdir', '/tmp/sentiment-analysis', 'Model directory.')
flags.DEFINE_enum('model', 'rnn', ['mlp', 'rnn'], 'Type of model to use.')
flags.DEFINE_enum('optimizer', 'adam',
['sgd', 'rmsprop', 'adam'],
'Type of optimizer to use for training.')
flags.DEFINE_enum('encoding', 'subwords8k',
['plain_text', 'bytes', 'subwords8k', 'subwords32k'],
'Type of text encoding to use.')
flags.DEFINE_integer('num_epochs', 10, 'Number of epochs to run for training.')
flags.DEFINE_integer('num_layers', 1, 'Number of hidden layers.')
flags.DEFINE_list('num_units', [64], 'Number of hidden units.')
flags.DEFINE_enum('cell_type', 'lstm',
['gru', 'lstm', 'bidi-gru', 'bidi-lstm'],
'Type of RNN cell to use.')
flags.DEFINE_integer('embedding_size', 32, 'Size of the input embedding.')
flags.DEFINE_integer('batch_size', 16, 'Size of the batch.')
flags.DEFINE_bool('verbose', True, 'Verbosity.')
flags.DEFINE_integer('max_length', None, 'Maximum length input to train on.')
flags.DEFINE_bool('early_stop', False, 'True to early stop')
def create_model(vocab_size):
"""Creates a Keras model."""
num_units = [int(num_unit) for num_unit in FLAGS.num_units]
if FLAGS.model == 'rnn':
new_model = model.rnn_model(FLAGS.num_layers, FLAGS.cell_type, num_units,
vocab_size, FLAGS.embedding_size)
else:
new_model = model.mlp_model(FLAGS.num_layers, num_units, vocab_size)
new_model.compile(optimizer=FLAGS.optimizer, loss='binary_crossentropy',
metrics=['accuracy'])
new_model.summary()
return new_model
def run_train():
"""Trains a model."""
# Set up input pipeline.
input_dataset = input_fn.InputDataset(FLAGS.encoding)
tokenizer = input_dataset.tokenizer
use_bow = (FLAGS.model == 'mlp')
train_dataset = input_dataset.input_fn('train', FLAGS.batch_size, bow=use_bow)
test_dataset = input_dataset.input_fn('test', 10, bow=use_bow)
new_model = create_model(tokenizer.vocab_size)
latest_checkpoint = tf.train.latest_checkpoint(FLAGS.logdir)
if latest_checkpoint:
print("Reloading from {}".format(latest_checkpoint))
new_model.load_weights(latest_checkpoint)
# Define callbacks to run during training.
callbacks = []
checkpoint = util.CNSModelCheckpoint(os.path.join(FLAGS.logdir, FLAGS.model))
callbacks.append(checkpoint)
tensorboard = tf.keras.callbacks.TensorBoard(
log_dir=FLAGS.logdir, update_freq='batch')
callbacks.append(tensorboard)
if FLAGS.early_stop:
early_stop = tf.keras.callbacks.EarlyStopping(
monitor='val_accuracy', min_delta=0.0001, patience=10)
callbacks.append(early_stop)
# Start training.
history = new_model.fit(train_dataset, epochs=FLAGS.num_epochs,
callbacks=callbacks,
validation_data=test_dataset,
validation_steps=25,
verbose=int(FLAGS.verbose))
# Write out the training history.
dirname = os.path.dirname(FLAGS.logdir)
if not tf.gfile.Exists(dirname):
tf.gfile.MakeDirs(dirname)
with tf.gfile.GFile(os.path.join(FLAGS.logdir, 'history.txt'), 'w') as f:
f.write(str(history.history))
def run_eval():
"""Evaluates a model."""
# Set up input pipeline.
input_dataset = input_fn.InputDataset(FLAGS.encoding)
tokenizer = input_dataset.tokenizer
use_bow = (FLAGS.model == 'mlp')
dataset = input_dataset.input_fn('test', FLAGS.batch_size, bow=use_bow)
new_model = create_model(tokenizer.vocab_size)
latest_checkpoint = tf.train.latest_checkpoint(FLAGS.logdir)
if latest_checkpoint:
print("Reloading from {}".format(latest_checkpoint))
new_model.load_weights(latest_checkpoint)
ret = new_model.evaluate(dataset)
print('Eval results: {}'.format(ret))
def main(unused_argv):
if FLAGS.mode == 'train':
run_train()
elif FLAGS.mode == 'eval':
run_eval()
if __name__ == '__main__':
tf.app.run(main)