forked from unclecode/crawl4ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickstart_async.config.py
610 lines (509 loc) · 21.8 KB
/
quickstart_async.config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
import os, sys
sys.path.append(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
)
import asyncio
import time
import json
import re
from typing import Dict, List
from bs4 import BeautifulSoup
from pydantic import BaseModel, Field
from crawl4ai import AsyncWebCrawler, CacheMode, BrowserConfig, CrawlerRunConfig
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
from crawl4ai.content_filter_strategy import BM25ContentFilter, PruningContentFilter
from crawl4ai.extraction_strategy import (
JsonCssExtractionStrategy,
LLMExtractionStrategy,
)
__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
print("Crawl4AI: Advanced Web Crawling and Data Extraction")
print("GitHub Repository: https://github.com/unclecode/crawl4ai")
print("Twitter: @unclecode")
print("Website: https://crawl4ai.com")
# Basic Example - Simple Crawl
async def simple_crawl():
print("\n--- Basic Usage ---")
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business", config=crawler_config
)
print(result.markdown[:500])
async def clean_content():
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
excluded_tags=["nav", "footer", "aside"],
remove_overlay_elements=True,
markdown_generator=DefaultMarkdownGenerator(
content_filter=PruningContentFilter(
threshold=0.48, threshold_type="fixed", min_word_threshold=0
),
options={"ignore_links": True},
),
)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="https://en.wikipedia.org/wiki/Apple",
config=crawler_config,
)
full_markdown_length = len(result.markdown_v2.raw_markdown)
fit_markdown_length = len(result.markdown_v2.fit_markdown)
print(f"Full Markdown Length: {full_markdown_length}")
print(f"Fit Markdown Length: {fit_markdown_length}")
async def link_analysis():
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.ENABLED,
exclude_external_links=True,
exclude_social_media_links=True,
)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=crawler_config,
)
print(f"Found {len(result.links['internal'])} internal links")
print(f"Found {len(result.links['external'])} external links")
for link in result.links['internal'][:5]:
print(f"Href: {link['href']}\nText: {link['text']}\n")
# JavaScript Execution Example
async def simple_example_with_running_js_code():
print("\n--- Executing JavaScript and Using CSS Selectors ---")
browser_config = BrowserConfig(headless=True, java_script_enabled=True)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
js_code="const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();",
# wait_for="() => { return Array.from(document.querySelectorAll('article.tease-card')).length > 10; }"
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business", config=crawler_config
)
print(result.markdown[:500])
# CSS Selector Example
async def simple_example_with_css_selector():
print("\n--- Using CSS Selectors ---")
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS, css_selector=".wide-tease-item__description"
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business", config=crawler_config
)
print(result.markdown[:500])
async def media_handling():
crawler_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS, exclude_external_images=True, screenshot=True)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=crawler_config
)
for img in result.media['images'][:5]:
print(f"Image URL: {img['src']}, Alt: {img['alt']}, Score: {img['score']}")
async def custom_hook_workflow(verbose=True):
async with AsyncWebCrawler() as crawler:
# Set a 'before_goto' hook to run custom code just before navigation
crawler.crawler_strategy.set_hook("before_goto", lambda page, context: print("[Hook] Preparing to navigate..."))
# Perform the crawl operation
result = await crawler.arun(
url="https://crawl4ai.com"
)
print(result.markdown_v2.raw_markdown[:500].replace("\n", " -- "))
# Proxy Example
async def use_proxy():
print("\n--- Using a Proxy ---")
browser_config = BrowserConfig(
headless=True,
proxy_config={
"server": "http://proxy.example.com:8080",
"username": "username",
"password": "password",
},
)
crawler_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business", config=crawler_config
)
if result.success:
print(result.markdown[:500])
# Screenshot Example
async def capture_and_save_screenshot(url: str, output_path: str):
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS, screenshot=True)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(url=url, config=crawler_config)
if result.success and result.screenshot:
import base64
screenshot_data = base64.b64decode(result.screenshot)
with open(output_path, "wb") as f:
f.write(screenshot_data)
print(f"Screenshot saved successfully to {output_path}")
else:
print("Failed to capture screenshot")
# LLM Extraction Example
class OpenAIModelFee(BaseModel):
model_name: str = Field(..., description="Name of the OpenAI model.")
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
output_fee: str = Field(
..., description="Fee for output token for the OpenAI model."
)
async def extract_structured_data_using_llm(
provider: str, api_token: str = None, extra_headers: Dict[str, str] = None
):
print(f"\n--- Extracting Structured Data with {provider} ---")
if api_token is None and provider != "ollama":
print(f"API token is required for {provider}. Skipping this example.")
return
browser_config = BrowserConfig(headless=True)
extra_args = {"temperature": 0, "top_p": 0.9, "max_tokens": 2000}
if extra_headers:
extra_args["extra_headers"] = extra_headers
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
word_count_threshold=1,
page_timeout=80000,
extraction_strategy=LLMExtractionStrategy(
provider=provider,
api_token=api_token,
schema=OpenAIModelFee.model_json_schema(),
extraction_type="schema",
instruction="""From the crawled content, extract all mentioned model names along with their fees for input and output tokens.
Do not miss any models in the entire content.""",
extra_args=extra_args,
),
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://openai.com/api/pricing/", config=crawler_config
)
print(result.extracted_content)
# CSS Extraction Example
async def extract_structured_data_using_css_extractor():
print("\n--- Using JsonCssExtractionStrategy for Fast Structured Output ---")
schema = {
"name": "KidoCode Courses",
"baseSelector": "section.charge-methodology .w-tab-content > div",
"fields": [
{
"name": "section_title",
"selector": "h3.heading-50",
"type": "text",
},
{
"name": "section_description",
"selector": ".charge-content",
"type": "text",
},
{
"name": "course_name",
"selector": ".text-block-93",
"type": "text",
},
{
"name": "course_description",
"selector": ".course-content-text",
"type": "text",
},
{
"name": "course_icon",
"selector": ".image-92",
"type": "attribute",
"attribute": "src",
},
],
}
browser_config = BrowserConfig(headless=True, java_script_enabled=True)
js_click_tabs = """
(async () => {
const tabs = document.querySelectorAll("section.charge-methodology .tabs-menu-3 > div");
for(let tab of tabs) {
tab.scrollIntoView();
tab.click();
await new Promise(r => setTimeout(r, 500));
}
})();
"""
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
extraction_strategy=JsonCssExtractionStrategy(schema),
js_code=[js_click_tabs],
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.kidocode.com/degrees/technology", config=crawler_config
)
companies = json.loads(result.extracted_content)
print(f"Successfully extracted {len(companies)} companies")
print(json.dumps(companies[0], indent=2))
# Dynamic Content Examples - Method 1
async def crawl_dynamic_content_pages_method_1():
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
first_commit = ""
async def on_execution_started(page, **kwargs):
nonlocal first_commit
try:
while True:
await page.wait_for_selector("li.Box-sc-g0xbh4-0 h4")
commit = await page.query_selector("li.Box-sc-g0xbh4-0 h4")
commit = await commit.evaluate("(element) => element.textContent")
commit = re.sub(r"\s+", "", commit)
if commit and commit != first_commit:
first_commit = commit
break
await asyncio.sleep(0.5)
except Exception as e:
print(f"Warning: New content didn't appear after JavaScript execution: {e}")
browser_config = BrowserConfig(headless=False, java_script_enabled=True)
async with AsyncWebCrawler(config=browser_config) as crawler:
crawler.crawler_strategy.set_hook("on_execution_started", on_execution_started)
url = "https://github.com/microsoft/TypeScript/commits/main"
session_id = "typescript_commits_session"
all_commits = []
js_next_page = """
const button = document.querySelector('a[data-testid="pagination-next-button"]');
if (button) button.click();
"""
for page in range(3):
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
css_selector="li.Box-sc-g0xbh4-0",
js_code=js_next_page if page > 0 else None,
js_only=page > 0,
session_id=session_id,
)
result = await crawler.arun(url=url, config=crawler_config)
assert result.success, f"Failed to crawl page {page + 1}"
soup = BeautifulSoup(result.cleaned_html, "html.parser")
commits = soup.select("li")
all_commits.extend(commits)
print(f"Page {page + 1}: Found {len(commits)} commits")
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
# Dynamic Content Examples - Method 2
async def crawl_dynamic_content_pages_method_2():
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
browser_config = BrowserConfig(headless=False, java_script_enabled=True)
js_next_page_and_wait = """
(async () => {
const getCurrentCommit = () => {
const commits = document.querySelectorAll('li.Box-sc-g0xbh4-0 h4');
return commits.length > 0 ? commits[0].textContent.trim() : null;
};
const initialCommit = getCurrentCommit();
const button = document.querySelector('a[data-testid="pagination-next-button"]');
if (button) button.click();
while (true) {
await new Promise(resolve => setTimeout(resolve, 100));
const newCommit = getCurrentCommit();
if (newCommit && newCommit !== initialCommit) {
break;
}
}
})();
"""
schema = {
"name": "Commit Extractor",
"baseSelector": "li.Box-sc-g0xbh4-0",
"fields": [
{
"name": "title",
"selector": "h4.markdown-title",
"type": "text",
"transform": "strip",
},
],
}
async with AsyncWebCrawler(config=browser_config) as crawler:
url = "https://github.com/microsoft/TypeScript/commits/main"
session_id = "typescript_commits_session"
all_commits = []
extraction_strategy = JsonCssExtractionStrategy(schema)
for page in range(3):
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
css_selector="li.Box-sc-g0xbh4-0",
extraction_strategy=extraction_strategy,
js_code=js_next_page_and_wait if page > 0 else None,
js_only=page > 0,
session_id=session_id,
)
result = await crawler.arun(url=url, config=crawler_config)
assert result.success, f"Failed to crawl page {page + 1}"
commits = json.loads(result.extracted_content)
all_commits.extend(commits)
print(f"Page {page + 1}: Found {len(commits)} commits")
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
async def cosine_similarity_extraction():
crawl_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
extraction_strategy=CosineStrategy(
word_count_threshold=10,
max_dist=0.2, # Maximum distance between two words
linkage_method="ward", # Linkage method for hierarchical clustering (ward, complete, average, single)
top_k=3, # Number of top keywords to extract
sim_threshold=0.3, # Similarity threshold for clustering
semantic_filter="McDonald's economic impact, American consumer trends", # Keywords to filter the content semantically using embeddings
verbose=True
),
)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business/consumer/how-mcdonalds-e-coli-crisis-inflation-politics-reflect-american-story-rcna177156",
config=crawl_config
)
print(json.loads(result.extracted_content)[:5])
# Browser Comparison
async def crawl_custom_browser_type():
print("\n--- Browser Comparison ---")
# Firefox
browser_config_firefox = BrowserConfig(browser_type="firefox", headless=True)
start = time.time()
async with AsyncWebCrawler(config=browser_config_firefox) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS),
)
print("Firefox:", time.time() - start)
print(result.markdown[:500])
# WebKit
browser_config_webkit = BrowserConfig(browser_type="webkit", headless=True)
start = time.time()
async with AsyncWebCrawler(config=browser_config_webkit) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS),
)
print("WebKit:", time.time() - start)
print(result.markdown[:500])
# Chromium (default)
browser_config_chromium = BrowserConfig(browser_type="chromium", headless=True)
start = time.time()
async with AsyncWebCrawler(config=browser_config_chromium) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS),
)
print("Chromium:", time.time() - start)
print(result.markdown[:500])
# Anti-Bot and User Simulation
async def crawl_with_user_simulation():
browser_config = BrowserConfig(
headless=True,
user_agent_mode="random",
user_agent_generator_config={"device_type": "mobile", "os_type": "android"},
)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
magic=True,
simulate_user=True,
override_navigator=True,
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(url="YOUR-URL-HERE", config=crawler_config)
print(result.markdown)
async def ssl_certification():
# Configure crawler to fetch SSL certificate
config = CrawlerRunConfig(
fetch_ssl_certificate=True,
cache_mode=CacheMode.BYPASS # Bypass cache to always get fresh certificates
)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url='https://example.com',
config=config
)
if result.success and result.ssl_certificate:
cert = result.ssl_certificate
# 1. Access certificate properties directly
print("\nCertificate Information:")
print(f"Issuer: {cert.issuer.get('CN', '')}")
print(f"Valid until: {cert.valid_until}")
print(f"Fingerprint: {cert.fingerprint}")
# 2. Export certificate in different formats
cert.to_json(os.path.join(tmp_dir, "certificate.json")) # For analysis
print("\nCertificate exported to:")
print(f"- JSON: {os.path.join(tmp_dir, 'certificate.json')}")
pem_data = cert.to_pem(os.path.join(tmp_dir, "certificate.pem")) # For web servers
print(f"- PEM: {os.path.join(tmp_dir, 'certificate.pem')}")
der_data = cert.to_der(os.path.join(tmp_dir, "certificate.der")) # For Java apps
print(f"- DER: {os.path.join(tmp_dir, 'certificate.der')}")
# Speed Comparison
async def speed_comparison():
print("\n--- Speed Comparison ---")
# Firecrawl comparison
from firecrawl import FirecrawlApp
app = FirecrawlApp(api_key=os.environ["FIRECRAWL_API_KEY"])
start = time.time()
scrape_status = app.scrape_url(
"https://www.nbcnews.com/business", params={"formats": ["markdown", "html"]}
)
end = time.time()
print("Firecrawl:")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(scrape_status['markdown'])} characters")
print(f"Images found: {scrape_status['markdown'].count('cldnry.s-nbcnews.com')}")
print()
# Crawl4AI comparisons
browser_config = BrowserConfig(headless=True)
# Simple crawl
async with AsyncWebCrawler(config=browser_config) as crawler:
start = time.time()
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=CrawlerRunConfig(
cache_mode=CacheMode.BYPASS, word_count_threshold=0
),
)
end = time.time()
print("Crawl4AI (simple crawl):")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(result.markdown)} characters")
print(f"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}")
print()
# Advanced filtering
start = time.time()
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
word_count_threshold=0,
markdown_generator=DefaultMarkdownGenerator(
content_filter=PruningContentFilter(
threshold=0.48, threshold_type="fixed", min_word_threshold=0
)
),
),
)
end = time.time()
print("Crawl4AI (Markdown Plus):")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(result.markdown_v2.raw_markdown)} characters")
print(f"Fit Markdown: {len(result.markdown_v2.fit_markdown)} characters")
print(f"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}")
print()
# Main execution
async def main():
# Basic examples
# await simple_crawl()
# await simple_example_with_running_js_code()
# await simple_example_with_css_selector()
# Advanced examples
# await extract_structured_data_using_css_extractor()
await extract_structured_data_using_llm(
"openai/gpt-4o", os.getenv("OPENAI_API_KEY")
)
# await crawl_dynamic_content_pages_method_1()
# await crawl_dynamic_content_pages_method_2()
# Browser comparisons
# await crawl_custom_browser_type()
# Performance testing
# await speed_comparison()
# Screenshot example
# await capture_and_save_screenshot(
# "https://www.example.com",
# os.path.join(__location__, "tmp/example_screenshot.jpg")
# )
if __name__ == "__main__":
asyncio.run(main())