diff --git a/docs/source/how-to-guides/feature-guides/global_local_modeling_fut_regr.ipynb b/docs/source/how-to-guides/feature-guides/global_local_modeling_fut_regr.ipynb index 0e0b22391..02cf34719 100644 --- a/docs/source/how-to-guides/feature-guides/global_local_modeling_fut_regr.ipynb +++ b/docs/source/how-to-guides/feature-guides/global_local_modeling_fut_regr.ipynb @@ -750,9 +750,8 @@ "source": [ "try:\n", " # it already installed dependencies\n", - " from torchsummary import summary\n", " from torchviz import make_dot\n", - "except:\n", + "except ImportError:\n", " # install graphviz on system\n", " import platform\n", "\n", @@ -768,7 +767,6 @@ " !pip install torchviz\n", " !pip install graphviz\n", " # import\n", - " from torchsummary import summary\n", " from torchviz import make_dot" ] }, diff --git a/docs/source/how-to-guides/feature-guides/global_local_trend.ipynb b/docs/source/how-to-guides/feature-guides/global_local_trend.ipynb index 968214d97..ca7fd3eff 100644 --- a/docs/source/how-to-guides/feature-guides/global_local_trend.ipynb +++ b/docs/source/how-to-guides/feature-guides/global_local_trend.ipynb @@ -1308,9 +1308,8 @@ "source": [ "try:\n", " # it already installed dependencies\n", - " from torchsummary import summary\n", " from torchviz import make_dot\n", - "except:\n", + "except ImportError:\n", " # install graphviz on system\n", " import platform\n", "\n", @@ -1326,7 +1325,6 @@ " !pip install torchviz\n", " !pip install graphviz\n", " # import\n", - " from torchsummary import summary\n", " from torchviz import make_dot" ] }, diff --git a/docs/source/how-to-guides/feature-guides/mlflow.ipynb b/docs/source/how-to-guides/feature-guides/mlflow.ipynb index 5e3f72f6b..645bba40c 100644 --- a/docs/source/how-to-guides/feature-guides/mlflow.ipynb +++ b/docs/source/how-to-guides/feature-guides/mlflow.ipynb @@ -254,7 +254,6 @@ "# Copy and paste url from command line to web browser\n", "\n", "import mlflow\n", - "import torchmetrics\n", "from mlflow.data.pandas_dataset import PandasDataset\n", "\n", "if local:\n", @@ -272,7 +271,6 @@ " )\n", "\n", " import mlflow.pytorch\n", - " from mlflow.client import MlflowClient\n", "\n", " model_name = \"NeuralProphet\"\n", "\n", diff --git a/docs/source/how-to-guides/feature-guides/network_architecture_visualization.ipynb b/docs/source/how-to-guides/feature-guides/network_architecture_visualization.ipynb index 70d99ce3f..65afb79c5 100644 --- a/docs/source/how-to-guides/feature-guides/network_architecture_visualization.ipynb +++ b/docs/source/how-to-guides/feature-guides/network_architecture_visualization.ipynb @@ -41,7 +41,7 @@ " # it already installed dependencies\n", " from torchsummary import summary\n", " from torchviz import make_dot\n", - "except:\n", + "except ImportError:\n", " # install graphviz on system\n", " import platform\n", "\n", @@ -69,7 +69,7 @@ "source": [ "try:\n", " from neuralprophet import NeuralProphet\n", - "except:\n", + "except ImportError:\n", " # if NeuralProphet is not installed yet:\n", " !pip install git+https://github.com/ourownstory/neural_prophet.git\n", " from neuralprophet import NeuralProphet" diff --git a/docs/source/how-to-guides/feature-guides/pl_profiling/fit-advanced.txt b/docs/source/how-to-guides/feature-guides/pl_profiling/fit-advanced.txt new file mode 100644 index 000000000..f081912a8 --- /dev/null +++ b/docs/source/how-to-guides/feature-guides/pl_profiling/fit-advanced.txt @@ -0,0 +1,4747 @@ +FIT Profiler Report +Profile stats for: [LightningModule]TimeNet.configure_callbacks + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 module.py:936(configure_callbacks) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.setup + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 hooks.py:420(setup) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.configure_optimizers + 1165 function calls (1119 primitive calls) in 0.029 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.029 0.029 time_net.py:863(configure_optimizers) + 1 0.000 0.000 0.029 0.029 trainer.py:1653(estimated_stepping_batches) + 1 0.000 0.000 0.029 0.029 fit_loop.py:213(setup_data) + 2 0.026 0.013 0.028 0.014 data.py:92(has_len_all_ranks) + 2 0.003 0.001 0.003 0.001 {built-in method torch.tensor} + 1 0.000 0.000 0.000 0.000 adamw.py:14(__init__) + 1 0.000 0.000 0.000 0.000 optimizer.py:250(__init__) + 1 0.000 0.000 0.000 0.000 _compile.py:20(inner) + 1 0.000 0.000 0.000 0.000 decorators.py:36(disable) + 1 0.000 0.000 0.000 0.000 eval_frame.py:351(__call__) + 1 0.000 0.000 0.000 0.000 data_connector.py:313(_request_dataloader) + 5 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 4 0.000 0.000 0.000 0.000 data.py:357(_replace_dunder_methods) + 1 0.000 0.000 0.000 0.000 utilities.py:135(_select_data_fetcher) + 2 0.000 0.000 0.000 0.000 contextlib.py:132(__enter__) + 5/1 0.000 0.000 0.000 0.000 {built-in method builtins.iter} + 1 0.000 0.000 0.000 0.000 fetchers.py:102(__iter__) + 1 0.000 0.000 0.000 0.000 fetchers.py:49(__iter__) + 1 0.000 0.000 0.000 0.000 signature_utils.py:18(is_param_in_hook_signature) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3377(check) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3342(check_verbose) + 1 0.000 0.000 0.000 0.000 combined_loader.py:347(__iter__) + 1 0.000 0.000 0.000 0.000 inspect.py:1336(getfullargspec) + 1 0.000 0.000 0.000 0.000 data_connector.py:468(_process_dataloader) + 1 0.000 0.000 0.000 0.000 combined_loader.py:90(__iter__) + 1 0.000 0.000 0.000 0.000 combined_loader.py:41(__iter__) + 1 0.000 0.000 0.000 0.000 combined_loader.py:43() + 1 0.000 0.000 0.000 0.000 dataloader.py:426(__iter__) + 1 0.000 0.000 0.000 0.000 dataloader.py:382(_get_iterator) + 1 0.000 0.000 0.000 0.000 dataloader.py:659(__init__) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3432(lookup_inner) + 2/1 0.000 0.000 0.000 0.000 inspect.py:2428(_signature_from_callable) + 1 0.000 0.000 0.000 0.000 dataloader.py:565(__init__) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3275(check_file) + 2 0.000 0.000 0.000 0.000 inheritance.py:19(get_all_subclasses) + 2 0.000 0.000 0.000 0.000 inheritance.py:8(get_all_subclasses_iterator) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3210(get_legacy_mod_inlinelist) + 2 0.000 0.000 0.000 0.000 typing.py:349(inner) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:1638(__init__) + 84/63 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 1 0.000 0.000 0.000 0.000 inspect.py:936(getsourcefile) + 92 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 1 0.000 0.000 0.000 0.000 typing.py:1556(__getitem__) + 1 0.000 0.000 0.000 0.000 inspect.py:2333(_signature_from_function) + 1 0.000 0.000 0.000 0.000 data_connector.py:407(_worker_check) + 9 0.000 0.000 0.000 0.000 functools.py:35(update_wrapper) + 7/4 0.000 0.000 0.000 0.000 data.py:47(sized_len) + 1 0.000 0.000 0.000 0.000 eval_frame.py:428(_fn) + 1 0.000 0.000 0.000 0.000 typing.py:1565(copy_with) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:35(__init__) + 6 0.000 0.000 0.000 0.000 module.py:2207(parameters) + 1 0.000 0.000 0.000 0.000 typing.py:1346(__init__) + 6 0.000 0.000 0.000 0.000 module.py:2232(named_parameters) + 5 0.000 0.000 0.000 0.000 dataloader.py:457(__len__) + 1 0.000 0.000 0.000 0.000 {method 'random_' of 'torch._C.TensorBase' objects} + 6 0.000 0.000 0.000 0.000 module.py:2193(_named_members) + 111 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 1 0.000 0.000 0.000 0.000 :16(exists) + 11 0.000 0.000 0.000 0.000 :117(__instancecheck__) + 1 0.000 0.000 0.000 0.000 optimizer.py:417(_patch_step_function) + 1 0.000 0.000 0.000 0.000 data_connector.py:175(_prepare_dataloader) + 3 0.000 0.000 0.000 0.000 combined_loader.py:355(__len__) + 2 0.000 0.000 0.000 0.000 rank_zero.py:36(wrapped_fn) + 1 0.000 0.000 0.000 0.000 {built-in method posix.stat} + 1 0.000 0.000 0.000 0.000 optimizer.py:863(add_param_group) + 3 0.000 0.000 0.000 0.000 combined_loader.py:96(__len__) + 20 0.000 0.000 0.000 0.000 trace_rules.py:3128(_module_dir) + 11 0.000 0.000 0.000 0.000 {built-in method _abc._abc_instancecheck} + 4 0.000 0.000 0.000 0.000 data.py:330(_wrap_attr_method) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:87(_initial_step) + 1 0.000 0.000 0.000 0.000 optimizer.py:371(profile_hook_step) + 5 0.000 0.000 0.000 0.000 enums.py:81(__eq__) + 3 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 5 0.000 0.000 0.000 0.000 sampler.py:297(__len__) + 3 0.000 0.000 0.000 0.000 inspect.py:2686(__init__) + 1 0.000 0.000 0.000 0.000 typing_extensions.py:3029(_collect_parameters) + 1 0.000 0.000 0.000 0.000 data_connector.py:167(_requires_distributed_sampler) + 1 0.000 0.000 0.000 0.000 combined_loader.py:284(__init__) + 2 0.000 0.000 0.000 0.000 package_importer.py:694(_patched_getfile) + 1 0.000 0.000 0.000 0.000 fetchers.py:139(reset) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:131(step) + 29 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects} + 15 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 1 0.000 0.000 0.000 0.000 fetchers.py:71(reset) + 1 0.000 0.000 0.000 0.000 accelerator_connector.py:609(is_distributed) + 1 0.000 0.000 0.000 0.000 rank_zero.py:66(rank_zero_info) + 3 0.000 0.000 0.000 0.000 combined_loader.py:404(_get_iterables_lengths) + 2 0.000 0.000 0.000 0.000 data.py:43(has_iterable_dataset) + 1 0.000 0.000 0.000 0.000 _pytree.py:18(_tree_flatten) + 53 0.000 0.000 0.000 0.000 {built-in method builtins.setattr} + 1 0.000 0.000 0.000 0.000 rank_zero.py:60(_info) + 1 0.000 0.000 0.000 0.000 trainer.py:1173(num_devices) + 20 0.000 0.000 0.000 0.000 trace_rules.py:3119(_strip_init_py) + 1 0.000 0.000 0.000 0.000 data.py:438(suggested_max_num_workers) + 8/3 0.000 0.000 0.000 0.000 :121(__subclasscheck__) + 3 0.000 0.000 0.000 0.000 combined_loader.py:405() + 2 0.000 0.000 0.000 0.000 data.py:283(_wrap_init_method) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:57(with_counter) + 2 0.000 0.000 0.000 0.000 __init__.py:1734(isEnabledFor) + 3 0.000 0.000 0.000 0.000 {built-in method builtins.any} + 2 0.000 0.000 0.000 0.000 inspect.py:896(getfile) + 1 0.000 0.000 0.000 0.000 data.py:245(_auto_add_worker_init_fn) + 1 0.000 0.000 0.000 0.000 __init__.py:1467(debug) + 1 0.000 0.000 0.000 0.000 trainer.py:1156(device_ids) + 1 0.000 0.000 0.000 0.000 eval_frame.py:550(__init__) + 5 0.000 0.000 0.000 0.000 sampler.py:170(__len__) + 1 0.000 0.000 0.000 0.000 model_helpers.py:29(is_overridden) + 1 0.000 0.000 0.000 0.000 dataloader.py:93(_get_distributed_settings) + 8/3 0.000 0.000 0.000 0.000 {built-in method _abc._abc_subclasscheck} + 1 0.000 0.000 0.000 0.000 {built-in method torch.empty} + 7 0.000 0.000 0.000 0.000 typing.py:1290(__setattr__) + 12/5 0.000 0.000 0.000 0.000 module.py:2369(named_modules) + 1 0.000 0.000 0.000 0.000 data.py:453(_num_cpus_available) + 1 0.000 0.000 0.000 0.000 inspect.py:2972(__init__) + 1 0.000 0.000 0.000 0.000 :771(get) + 2 0.000 0.000 0.000 0.000 typing.py:1561() + 1 0.000 0.000 0.000 0.000 typing.py:1251(__init__) + 6 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 5 0.000 0.000 0.000 0.000 sampler.py:145(num_samples) + 11 0.000 0.000 0.000 0.000 enum.py:192(__get__) + 1 0.000 0.000 0.000 0.000 platform.py:1119(python_version) + 1 0.000 0.000 0.000 0.000 rank_zero.py:76(rank_zero_warn) + 1 0.000 0.000 0.000 0.000 eval_frame.py:448() + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:1775(get_lr) + 1 0.000 0.000 0.000 0.000 eval_frame.py:290(__init__) + 20 0.000 0.000 0.000 0.000 _tensor.py:1059(__hash__) + 1 0.000 0.000 0.000 0.000 combined_loader.py:313(flattened) + 2 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 2 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 1 0.000 0.000 0.000 0.000 :674(__getitem__) + 1 0.000 0.000 0.000 0.000 states.py:67(dataloader_prefix) + 1 0.000 0.000 0.000 0.000 {built-in method posix.cpu_count} + 31 0.000 0.000 0.000 0.000 {method 'endswith' of 'str' objects} + 1 0.000 0.000 0.000 0.000 data_connector.py:439(_parse_num_batches) + 1 0.000 0.000 0.000 0.000 rank_zero.py:72(_warn) + 3 0.000 0.000 0.000 0.000 base.py:127(__instancecheck__) + 1 0.000 0.000 0.000 0.000 {built-in method torch._C._log_api_usage_once} + 1 0.000 0.000 0.000 0.000 fetchers.py:95(__init__) + 1 0.000 0.000 0.000 0.000 eval_frame.py:141(change) + 3 0.000 0.000 0.000 0.000 enum.py:685(__call__) + 1 0.000 0.000 0.000 0.000 utils.py:862(getfile) + 1 0.000 0.000 0.000 0.000 dataloader.py:74(create_fetcher) + 1 0.000 0.000 0.000 0.000 _pytree.py:761(__init__) + 1 0.000 0.000 0.000 0.000 _pytree.py:6(_is_leaf_or_primitive_container) + 9 0.000 0.000 0.000 0.000 typing.py:1238(_is_dunder) + 1 0.000 0.000 0.000 0.000 distributed_c10d.py:973(is_initialized) + 1 0.000 0.000 0.000 0.000 typing_extensions.py:2954(_has_generic_or_protocol_as_origin) + 1 0.000 0.000 0.000 0.000 typing.py:168(_type_check) + 1 0.000 0.000 0.000 0.000 _pytree.py:811(tree_unflatten) + 9 0.000 0.000 0.000 0.000 functools.py:65(wraps) + 1 0.000 0.000 0.000 0.000 combined_loader.py:68(__init__) + 6 0.000 0.000 0.000 0.000 dataloader.py:445(_index_sampler) + 1 0.000 0.000 0.000 0.000 {built-in method _warnings.warn} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 3 0.000 0.000 0.000 0.000 inspect.py:943() + 2 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 1 0.000 0.000 0.000 0.000 trace_rules.py:2840(is_aten_op_or_tensor_method) + 1 0.000 0.000 0.000 0.000 :1() + 7 0.000 0.000 0.000 0.000 trace_rules.py:3279() + 1 0.000 0.000 0.000 0.000 _pytree.py:601(_get_node_type) + 1 0.000 0.000 0.000 0.000 imports.py:47(_habana_available_and_importable) + 1 0.000 0.000 0.000 0.000 overrides.py:10(is_overridden) + 20 0.000 0.000 0.000 0.000 {method 'replace' of 'str' objects} + 2 0.000 0.000 0.000 0.000 typing.py:1280(__getattr__) + 6 0.000 0.000 0.000 0.000 combined_loader.py:100() + 2 0.000 0.000 0.000 0.000 lr_scheduler.py:1764(_annealing_cos) + 1 0.000 0.000 0.000 0.000 combined_loader.py:329(limits) + 2 0.000 0.000 0.000 0.000 inheritance.py:11(recurse) + 9 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 __init__.py:1479(info) + 1 0.000 0.000 0.000 0.000 inspect.py:167(get_annotations) + 1 0.000 0.000 0.000 0.000 __init__.py:228(_acquireLock) + 11 0.000 0.000 0.000 0.000 enum.py:1243(value) + 3 0.000 0.000 0.000 0.000 eval_frame.py:265(innermost_fn) + 4 0.000 0.000 0.000 0.000 module.py:2260() + 1 0.000 0.000 0.000 0.000 typing_extensions.py:2976(_is_unpacked_typevartuple) + 3 0.000 0.000 0.000 0.000 lr_scheduler.py:1755(_format_param) + 14 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 typing.py:1201(args) + 1 0.000 0.000 0.000 0.000 :756(encode) + 1 0.000 0.000 0.000 0.000 context.py:253(get_start_method) + 1 0.000 0.000 0.000 0.000 __init__.py:9(is_available) + 15 0.000 0.000 0.000 0.000 {method 'startswith' of 'str' objects} + 1 0.000 0.000 0.000 0.000 {method 'item' of 'torch._C.TensorBase' objects} + 6 0.000 0.000 0.000 0.000 {built-in method builtins.delattr} + 1 0.000 0.000 0.000 0.000 fetchers.py:29(__init__) + 1 0.000 0.000 0.000 0.000 distributed_c10d.py:588(WORLD) + 1 0.000 0.000 0.000 0.000 imports.py:196(__bool__) + 1 0.000 0.000 0.000 0.000 _pytree.py:734(unflatten) + 1 0.000 0.000 0.000 0.000 trainer.py:1480(max_steps) + 1 0.000 0.000 0.000 0.000 combined_loader.py:29(__init__) + 4 0.000 0.000 0.000 0.000 inspect.py:3019() + 21 0.000 0.000 0.000 0.000 {built-in method builtins.id} + 12 0.000 0.000 0.000 0.000 {method 'setdefault' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 _pytree.py:764(__post_init__) + 9 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 4 0.000 0.000 0.000 0.000 inspect.py:946() + 1 0.000 0.000 0.000 0.000 fit_loop.py:434(_load_combined_loader_states) + 1 0.000 0.000 0.000 0.000 platform.py:1002(_sys_version) + 1 0.000 0.000 0.000 0.000 fetch.py:8(__init__) + 7 0.000 0.000 0.000 0.000 dataloader.py:441(_auto_collation) + 1 0.000 0.000 0.000 0.000 typing_extensions.py:2916(_check_generic) + 11 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects} + 4 0.000 0.000 0.000 0.000 inspect.py:378(isfunction) + 1 0.000 0.000 0.000 0.000 __init__.py:237(_releaseLock) + 1 0.000 0.000 0.000 0.000 _pytree.py:590(_is_namedtuple_instance) + 1 0.000 0.000 0.000 0.000 data_connector.py:282(dataloader) + 5 0.000 0.000 0.000 0.000 time_dataset.py:842(__len__) + 3 0.000 0.000 0.000 0.000 {method 'isidentifier' of 'str' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1467(current_epoch) + 1 0.000 0.000 0.000 0.000 typing.py:1205(kwargs) + 10 0.000 0.000 0.000 0.000 {method 'lower' of 'str' objects} + 1 0.000 0.000 0.000 0.000 eval_frame.py:119(backend_cache_manager) + 4 0.000 0.000 0.000 0.000 inspect.py:292(isclass) + 1 0.000 0.000 0.000 0.000 utils.py:435(hashable) + 2 0.000 0.000 0.000 0.000 inspect.py:456(istraceback) + 2 0.000 0.000 0.000 0.000 inspect.py:283(ismodule) + 3 0.000 0.000 0.000 0.000 single_device.py:71(root_device) + 1 0.000 0.000 0.000 0.000 typing.py:2402(get_origin) + 1 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.RLock' objects} + 3 0.000 0.000 0.000 0.000 trainer.py:1472(max_epochs) + 1 0.000 0.000 0.000 0.000 fit_loop.py:116(max_steps) + 2 0.000 0.000 0.000 0.000 {built-in method math.cos} + 1 0.000 0.000 0.000 0.000 {built-in method __new__ of type object at 0x101877ca8} + 6 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 3 0.000 0.000 0.000 0.000 {built-in method builtins.min} + 3 0.000 0.000 0.000 0.000 {method '__contains__' of 'frozenset' objects} + 1 0.000 0.000 0.000 0.000 __init__.py:1720(getEffectiveLevel) + 2 0.000 0.000 0.000 0.000 inspect.py:466(isframe) + 1 0.000 0.000 0.000 0.000 {built-in method math.ceil} + 2 0.000 0.000 0.000 0.000 inspect.py:300(ismethod) + 6 0.000 0.000 0.000 0.000 inspect.py:2739(name) + 2 0.000 0.000 0.000 0.000 inspect.py:480(iscode) + 3 0.000 0.000 0.000 0.000 enum.py:1091(__new__) + 2 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 8 0.000 0.000 0.000 0.000 {method 'items' of 'collections.OrderedDict' objects} + 1 0.000 0.000 0.000 0.000 {method 'values' of 'mappingproxy' objects} + 6 0.000 0.000 0.000 0.000 {function VariableTrackerMeta.__instancecheck__ at 0x15226da80} + 2 0.000 0.000 0.000 0.000 {built-in method torch._C._dynamo.eval_frame.set_eval_frame} + 1 0.000 0.000 0.000 0.000 typing.py:159(_type_convert) + 1 0.000 0.000 0.000 0.000 {method 'encode' of 'str' objects} + 2 0.000 0.000 0.000 0.000 typing.py:1351() + 4 0.000 0.000 0.000 0.000 combined_loader.py:308(flattened) + 2 0.000 0.000 0.000 0.000 single_device.py:50(reduce) + 2 0.000 0.000 0.000 0.000 {method '__subclasses__' of 'type' objects} + 1 0.000 0.000 0.000 0.000 :262(__subclasshook__) + 1 0.000 0.000 0.000 0.000 :2(__init__) + 1 0.000 0.000 0.000 0.000 dataloader.py:389(multiprocessing_context) + 1 0.000 0.000 0.000 0.000 module.py:215(trainer) + 1 0.000 0.000 0.000 0.000 trainer.py:1133(global_rank) + 1 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 imports.py:160(_check_available) + 1 0.000 0.000 0.000 0.000 {built-in method sys._getframe} + 3 0.000 0.000 0.000 0.000 inspect.py:2747(annotation) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 data_connector.py:375(_check_dataloader_iterable) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:178(__init__) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:181(__enter__) + 1 0.000 0.000 0.000 0.000 eval_frame.py:149(revert) + 1 0.000 0.000 0.000 0.000 trainer.py:1590(loggers) + 1 0.000 0.000 0.000 0.000 loop.py:27(restarting) + 3 0.000 0.000 0.000 0.000 inspect.py:2751(kind) + 2 0.000 0.000 0.000 0.000 fetchers.py:38(combined_loader) + 1 0.000 0.000 0.000 0.000 {method 'release' of '_thread.RLock' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1493(train_dataloader) + 3 0.000 0.000 0.000 0.000 inspect.py:2743(default) + 1 0.000 0.000 0.000 0.000 typing.py:1150(__init__) + 1 0.000 0.000 0.000 0.000 typing.py:1126(__init__) + 1 0.000 0.000 0.000 0.000 __init__.py:1319(disable) + 1 0.000 0.000 0.000 0.000 _pytree.py:650(is_leaf) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:25(_check_verbose_deprecated_warning) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:51() + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:185(__exit__) + 1 0.000 0.000 0.000 0.000 {method 'isdisjoint' of 'set' objects} + 2 0.000 0.000 0.000 0.000 eval_frame.py:261(always_false) + 1 0.000 0.000 0.000 0.000 inspect.py:3032(parameters) + 1 0.000 0.000 0.000 0.000 inspect.py:3036(return_annotation) + 1 0.000 0.000 0.000 0.000 distributed_c10d.py:460(default_pg) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:167() + 1 0.000 0.000 0.000 0.000 eval_frame.py:257(nothing) + 1 0.000 0.000 0.000 0.000 fetchers.py:46(setup) + 1 0.000 0.000 0.000 0.000 strategy.py:439(process_dataloader) + 1 0.000 0.000 0.000 0.000 single_device.py:86(barrier) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.hash} + 1 0.000 0.000 0.000 0.000 trainer.py:1523(num_training_batches) + 1 0.000 0.000 0.000 0.000 typing.py:2246(cast) + + + +Profile stats for: [LightningModule]TimeNet.on_fit_start + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 hooks.py:30(on_fit_start) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_start + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:44(on_train_start) + + + +Profile stats for: [Strategy]SingleDeviceStrategy.on_train_start + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 strategy.py:545(on_train_start) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_epoch_start + 70 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 10 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 10 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 10 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 10 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 10 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 10 0.000 0.000 0.000 0.000 hooks.py:211(on_train_epoch_start) + 10 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: run_training_epoch + 1290 function calls (1200 primitive calls) in 1.308 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 10 0.000 0.000 1.308 0.131 training_epoch_loop.py:135(run) + 10 0.000 0.000 1.307 0.131 training_epoch_loop.py:192(advance) + 10 0.000 0.000 1.307 0.131 {built-in method builtins.next} + 10 0.000 0.000 1.307 0.131 fetchers.py:119(__next__) + 10 0.000 0.000 1.307 0.131 fetchers.py:55(__next__) + 10 0.000 0.000 1.307 0.131 training_epoch_loop.py:186(_on_before_fetch) + 10 0.000 0.000 1.307 0.131 advanced.py:65(start) + 10 1.307 0.131 1.307 0.131 {method 'enable' of '_lsprof.Profiler' objects} + 10 0.000 0.000 0.001 0.000 training_epoch_loop.py:176(on_run_start) + 45/9 0.000 0.000 0.001 0.000 {built-in method builtins.iter} + 9 0.000 0.000 0.001 0.000 fetchers.py:102(__iter__) + 9 0.000 0.000 0.001 0.000 fetchers.py:49(__iter__) + 9 0.000 0.000 0.000 0.000 combined_loader.py:347(__iter__) + 9 0.000 0.000 0.000 0.000 combined_loader.py:90(__iter__) + 9 0.000 0.000 0.000 0.000 combined_loader.py:41(__iter__) + 9 0.000 0.000 0.000 0.000 combined_loader.py:43() + 9 0.000 0.000 0.000 0.000 dataloader.py:426(__iter__) + 9 0.000 0.000 0.000 0.000 dataloader.py:382(_get_iterator) + 9 0.000 0.000 0.000 0.000 dataloader.py:659(__init__) + 9 0.000 0.000 0.000 0.000 dataloader.py:565(__init__) + 10 0.000 0.000 0.000 0.000 training_epoch_loop.py:147(reset) + 9 0.000 0.000 0.000 0.000 fetchers.py:139(reset) + 9 0.000 0.000 0.000 0.000 fetchers.py:71(reset) + 18/9 0.000 0.000 0.000 0.000 data.py:47(sized_len) + 90/45 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 9 0.000 0.000 0.000 0.000 combined_loader.py:355(__len__) + 9 0.000 0.000 0.000 0.000 combined_loader.py:96(__len__) + 9 0.000 0.000 0.000 0.000 {method 'random_' of 'torch._C.TensorBase' objects} + 198 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 9 0.000 0.000 0.000 0.000 combined_loader.py:404(_get_iterables_lengths) + 40 0.000 0.000 0.000 0.000 progress.py:172(reset_on_run) + 9 0.000 0.000 0.000 0.000 combined_loader.py:405() + 10 0.000 0.000 0.000 0.000 loop.py:32(restarting) + 9 0.000 0.000 0.000 0.000 dataloader.py:457(__len__) + 10 0.000 0.000 0.000 0.000 progress.py:282(reset_on_run) + 10 0.000 0.000 0.000 0.000 progress.py:204(reset_on_run) + 10 0.000 0.000 0.000 0.000 training_epoch_loop.py:116(done) + 37 0.000 0.000 0.000 0.000 :117(__instancecheck__) + 9 0.000 0.000 0.000 0.000 dataloader.py:74(create_fetcher) + 10 0.000 0.000 0.000 0.000 training_epoch_loop.py:106(_is_training_done) + 9 0.000 0.000 0.000 0.000 {built-in method torch.empty} + 20 0.000 0.000 0.000 0.000 progress.py:114(reset) + 37 0.000 0.000 0.000 0.000 {built-in method _abc._abc_instancecheck} + 10 0.000 0.000 0.000 0.000 progress.py:249(reset_on_run) + 9 0.000 0.000 0.000 0.000 sampler.py:297(__len__) + 30 0.000 0.000 0.000 0.000 progress.py:87(reset) + 9 0.000 0.000 0.000 0.000 dataloader.py:93(_get_distributed_settings) + 9 0.000 0.000 0.000 0.000 combined_loader.py:68(__init__) + 9 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 10 0.000 0.000 0.000 0.000 training_epoch_loop.py:99(global_step) + 9 0.000 0.000 0.000 0.000 sampler.py:170(__len__) + 50 0.000 0.000 0.000 0.000 progress.py:56(reset) + 9 0.000 0.000 0.000 0.000 combined_loader.py:29(__init__) + 9 0.000 0.000 0.000 0.000 distributed_c10d.py:973(is_initialized) + 9 0.000 0.000 0.000 0.000 sampler.py:145(num_samples) + 10 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 18 0.000 0.000 0.000 0.000 combined_loader.py:100() + 9 0.000 0.000 0.000 0.000 fetch.py:8(__init__) + 18 0.000 0.000 0.000 0.000 dataloader.py:445(_index_sampler) + 9 0.000 0.000 0.000 0.000 distributed_c10d.py:588(WORLD) + 10 0.000 0.000 0.000 0.000 training_epoch_loop.py:331(_num_ready_batches_reached) + 9 0.000 0.000 0.000 0.000 {method 'item' of 'torch._C.TensorBase' objects} + 9 0.000 0.000 0.000 0.000 __init__.py:9(is_available) + 18 0.000 0.000 0.000 0.000 fetchers.py:38(combined_loader) + 27 0.000 0.000 0.000 0.000 dataloader.py:441(_auto_collation) + 10 0.000 0.000 0.000 0.000 trainer.py:1467(current_epoch) + 1 0.000 0.000 0.000 0.000 :121(__subclasscheck__) + 9 0.000 0.000 0.000 0.000 {built-in method builtins.min} + 1 0.000 0.000 0.000 0.000 {built-in method _abc._abc_subclasscheck} + 29 0.000 0.000 0.000 0.000 loop.py:27(restarting) + 10 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 10 0.000 0.000 0.000 0.000 {built-in method builtins.vars} + 9 0.000 0.000 0.000 0.000 sampler.py:274(__iter__) + 10 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 9 0.000 0.000 0.000 0.000 combined_loader.py:308(flattened) + 9 0.000 0.000 0.000 0.000 time_dataset.py:842(__len__) + 10 0.000 0.000 0.000 0.000 module.py:295(automatic_optimization) + 10 0.000 0.000 0.000 0.000 utilities.py:113(_is_max_limit_reached) + 9 0.000 0.000 0.000 0.000 distributed_c10d.py:460(default_pg) + 10 0.000 0.000 0.000 0.000 trainer.py:1523(num_training_batches) + 9 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 1 0.000 0.000 0.000 0.000 :283(__subclasshook__) + 10 0.000 0.000 0.000 0.000 {method 'values' of 'dict' objects} + + + +Profile stats for: [_TrainingEpochLoop].train_dataloader_next + 242230 function calls (240666 primitive calls) in 0.239 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 600/120 0.000 0.000 0.239 0.002 {built-in method builtins.next} + 120 0.000 0.000 0.239 0.002 combined_loader.py:339(__next__) + 120 0.000 0.000 0.239 0.002 combined_loader.py:72(__next__) + 120 0.000 0.000 0.239 0.002 dataloader.py:626(__next__) + 120 0.009 0.000 0.237 0.002 dataloader.py:673(_next_data) + 120 0.000 0.000 0.225 0.002 fetch.py:46(fetch) + 120 0.003 0.000 0.210 0.002 fetch.py:51() + 14620 0.010 0.000 0.208 0.000 time_dataset.py:845(__getitem__) + 14620 0.011 0.000 0.198 0.000 time_dataset.py:171(__getitem__) + 14620 0.023 0.000 0.178 0.000 time_dataset.py:297(tabularize_univariate_datetime_single_index) + 14620 0.117 0.000 0.119 0.000 time_dataset.py:156(get_sample_seasonalities) + 14620 0.017 0.000 0.030 0.000 time_dataset.py:709(get_sample_targets) + 43860 0.018 0.000 0.018 0.000 {method 'unsqueeze' of 'torch._C.TensorBase' objects} + 120 0.000 0.000 0.014 0.000 collate.py:255(default_collate) + 1080/120 0.002 0.000 0.014 0.000 collate.py:108(collate) + 120 0.000 0.000 0.010 0.000 collate.py:173() + 14620 0.009 0.000 0.009 0.000 time_dataset.py:226(sample_index_to_df_index) + 360/240 0.000 0.000 0.007 0.000 collate.py:154() + 480 0.001 0.000 0.004 0.000 collate.py:194(collate_tensor_fn) + 480 0.004 0.000 0.004 0.000 {built-in method torch.stack} + 120 0.000 0.000 0.003 0.000 dataloader.py:620(_next_index) + 120 0.002 0.000 0.003 0.000 sampler.py:274(__iter__) + 120 0.001 0.000 0.002 0.000 {built-in method builtins.all} + 600 0.002 0.000 0.002 0.000 collate.py:154() + 14620 0.001 0.000 0.002 0.000 collate.py:168() + 360 0.001 0.000 0.002 0.000 copy.py:66(copy) + 44134 0.001 0.000 0.001 0.000 {built-in method builtins.len} + 14630 0.001 0.000 0.001 0.000 sampler.py:152(__iter__) + 5539 0.001 0.000 0.001 0.000 {built-in method builtins.isinstance} + 222 0.000 0.000 0.001 0.000 ipkernel.py:775(_clean_thread_parent_frames) + 14620 0.001 0.000 0.001 0.000 {method 'items' of 'collections.OrderedDict' objects} + 360 0.000 0.000 0.001 0.000 {method '__reduce_ex__' of 'object' objects} + 120 0.000 0.000 0.001 0.000 profiler.py:604(__enter__) + 120 0.000 0.000 0.001 0.000 _ops.py:846(__call__) + 120 0.000 0.000 0.001 0.000 profiler.py:610(__exit__) + 120 0.000 0.000 0.000 0.000 {built-in method torch._ops.profiler._record_function_enter_new} + 360 0.000 0.000 0.000 0.000 copyreg.py:113(_slotnames) + 1080 0.000 0.000 0.000 0.000 :117(__instancecheck__) + 111 0.000 0.000 0.000 0.000 ipkernel.py:790() + 1080 0.000 0.000 0.000 0.000 {built-in method _abc._abc_instancecheck} + 20 0.000 0.000 0.000 0.000 {built-in method torch.randperm} + 120 0.000 0.000 0.000 0.000 profiler.py:593(__init__) + 20 0.000 0.000 0.000 0.000 {method 'tolist' of 'torch._C.TensorBase' objects} + 120 0.000 0.000 0.000 0.000 _pytree.py:811(tree_unflatten) + 111 0.000 0.000 0.000 0.000 threading.py:1494(enumerate) + 120 0.000 0.000 0.000 0.000 _ops.py:591(__call__) + 120 0.000 0.000 0.000 0.000 {built-in method torch._ops.profiler.} + 360 0.000 0.000 0.000 0.000 copy.py:259(_reconstruct) + 721 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 120 0.000 0.000 0.000 0.000 _pytree.py:734(unflatten) + 777 0.000 0.000 0.000 0.000 threading.py:1161(ident) + 121/120 0.000 0.000 0.000 0.000 typing.py:349(inner) + 120 0.000 0.000 0.000 0.000 training_epoch_loop.py:189(_on_after_fetch) + 601 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 360 0.000 0.000 0.000 0.000 {method 'update' of 'collections.OrderedDict' objects} + 123/122 0.000 0.000 0.000 0.000 :121(__subclasscheck__) + 2/1 0.000 0.000 0.000 0.000 typing.py:476(__getitem__) + 1 0.000 0.000 0.000 0.000 typing.py:697(Optional) + 123/122 0.000 0.000 0.000 0.000 {built-in method _abc._abc_subclasscheck} + 120 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 842 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 3 0.000 0.000 0.000 0.000 typing.py:168(_type_check) + 1 0.000 0.000 0.000 0.000 typing.py:653(Union) + 1 0.000 0.000 0.000 0.000 _ops.py:800(__getattr__) + 360 0.000 0.000 0.000 0.000 {method 'get' of 'mappingproxy' objects} + 480 0.000 0.000 0.000 0.000 worker.py:89(get_worker_info) + 3 0.000 0.000 0.000 0.000 typing.py:159(_type_convert) + 1 0.000 0.000 0.000 0.000 typing.py:838(__init__) + 444 0.000 0.000 0.000 0.000 {method 'keys' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {built-in method builtins.compile} + 360 0.000 0.000 0.000 0.000 {built-in method builtins.issubclass} + 1 0.000 0.000 0.000 0.000 typing.py:1346(__init__) + 120 0.000 0.000 0.000 0.000 _pytree.py:650(is_leaf) + 10 0.000 0.000 0.000 0.000 {method 'manual_seed' of 'torch._C.Generator' objects} + 120 0.000 0.000 0.000 0.000 :315(__subclasshook__) + 20 0.000 0.000 0.000 0.000 sampler.py:145(num_samples) + 1 0.000 0.000 0.000 0.000 _ops.py:547(__init__) + 222 0.000 0.000 0.000 0.000 {method 'values' of 'dict' objects} + 111 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.RLock' objects} + 120 0.000 0.000 0.000 0.000 {method '__exit__' of 'torch._C.DisableTorchFunctionSubclass' objects} + 1 0.000 0.000 0.000 0.000 {built-in method torch._C._get_operation_overload} + 10 0.000 0.000 0.000 0.000 {built-in method torch.empty} + 10 0.000 0.000 0.000 0.000 {method 'random_' of 'torch._C.TensorBase' objects} + 120 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 typing_extensions.py:3029(_collect_parameters) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.iter} + 7 0.000 0.000 0.000 0.000 typing.py:1290(__setattr__) + 120 0.000 0.000 0.000 0.000 __init__.py:127(annotate) + 1 0.000 0.000 0.000 0.000 typing.py:1251(__init__) + 120 0.000 0.000 0.000 0.000 _jit_internal.py:1120(is_scripting) + 120 0.000 0.000 0.000 0.000 collate.py:237(collate_str_fn) + 3 0.000 0.000 0.000 0.000 typing.py:689() + 1 0.000 0.000 0.000 0.000 typing.py:311(_remove_dups_flatten) + 7 0.000 0.000 0.000 0.000 typing.py:1238(_is_dunder) + 17 0.000 0.000 0.000 0.000 typing.py:888(__eq__) + 1 0.000 0.000 0.000 0.000 typing_extensions.py:2954(_has_generic_or_protocol_as_origin) + 30 0.000 0.000 0.000 0.000 time_dataset.py:842(__len__) + 10 0.000 0.000 0.000 0.000 {method 'item' of 'torch._C.TensorBase' objects} + 1 0.000 0.000 0.000 0.000 {built-in method torch._C._get_schema} + 1 0.000 0.000 0.000 0.000 typing_extensions.py:2976(_is_unpacked_typevartuple) + 1 0.000 0.000 0.000 0.000 typing.py:297(_deduplicate) + 2 0.000 0.000 0.000 0.000 typing.py:897(__hash__) + 1 0.000 0.000 0.000 0.000 {method 'split' of 'str' objects} + 8 0.000 0.000 0.000 0.000 {method 'startswith' of 'str' objects} + 1 0.000 0.000 0.000 0.000 typing.py:2402(get_origin) + 1 0.000 0.000 0.000 0.000 _ops.py:43(__init__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.setattr} + 2 0.000 0.000 0.000 0.000 :409(__subclasshook__) + 3 0.000 0.000 0.000 0.000 typing.py:1351() + 4 0.000 0.000 0.000 0.000 {method 'endswith' of 'str' objects} + 1 0.000 0.000 0.000 0.000 typing.py:455(__repr__) + 3 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects} + 1 0.000 0.000 0.000 0.000 :283(__subclasshook__) + 2 0.000 0.000 0.000 0.000 {built-in method builtins.hash} + 1 0.000 0.000 0.000 0.000 {built-in method sys._getframe} + + + +Profile stats for: [LightningModule]TimeNet.on_before_batch_transfer + 840 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 120 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 120 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 120 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 hooks.py:613(on_before_batch_transfer) + 120 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Strategy]SingleDeviceStrategy.batch_to_device + 3840 function calls (3720 primitive calls) in 0.222 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.222 0.002 strategy.py:262(batch_to_device) + 120 0.000 0.000 0.222 0.002 module.py:354(_apply_batch_transfer_handler) + 120 0.000 0.000 0.222 0.002 module.py:336(_call_batch_hook) + 120 0.000 0.000 0.221 0.002 call.py:137(_call_lightning_module_hook) + 120 0.000 0.000 0.221 0.002 contextlib.py:132(__enter__) + 120 0.000 0.000 0.221 0.002 {built-in method builtins.next} + 120 0.000 0.000 0.221 0.002 profiler.py:55(profile) + 120 0.000 0.000 0.221 0.002 advanced.py:65(start) + 120 0.221 0.002 0.221 0.002 {method 'enable' of '_lsprof.Profiler' objects} + 120 0.000 0.000 0.000 0.000 module.py:1711(__setattr__) + 480/360 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 120 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 120 0.000 0.000 0.000 0.000 parameter.py:8(__instancecheck__) + 120 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 120 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 120 0.000 0.000 0.000 0.000 __init__.py:1467(debug) + 120 0.000 0.000 0.000 0.000 data_connector.py:349(get_instance) + 240 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 120 0.000 0.000 0.000 0.000 __init__.py:1734(isEnabledFor) + 240 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 360 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 single_device.py:71(root_device) + 120 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 120 0.000 0.000 0.000 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 120 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + + + +Profile stats for: [LightningModule]TimeNet.transfer_batch_to_device + 441640 function calls (365900 primitive calls) in 0.219 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.219 0.002 hooks.py:564(transfer_batch_to_device) + 120 0.000 0.000 0.219 0.002 apply_func.py:71(move_data_to_device) + 120 0.000 0.000 0.219 0.002 apply_func.py:23(apply_to_collection) +15700/120 0.018 0.000 0.219 0.002 apply_func.py:84(_apply_to_collection_slow) + 480 0.001 0.000 0.149 0.000 apply_func.py:91(batch_to) + 480 0.148 0.000 0.148 0.000 {method 'to' of 'torch._C.TensorBase' objects} +151960/91800 0.011 0.000 0.040 0.000 {built-in method builtins.isinstance} + 30080 0.006 0.000 0.029 0.000 typing.py:1297(__instancecheck__) + 30080 0.008 0.000 0.023 0.000 typing.py:1572(__subclasscheck__) + 30080 0.004 0.000 0.012 0.000 {built-in method builtins.issubclass} + 14620 0.002 0.000 0.009 0.000 apply_func.py:17(is_dataclass_instance) + 30084 0.003 0.000 0.008 0.000 :121(__subclasscheck__) + 14620 0.004 0.000 0.007 0.000 dataclasses.py:1256(is_dataclass) + 30084 0.004 0.000 0.005 0.000 {built-in method _abc._abc_subclasscheck} + 15940 0.002 0.000 0.003 0.000 :117(__instancecheck__) + 14860 0.002 0.000 0.003 0.000 apply_func.py:11(is_namedtuple) + 14620 0.002 0.000 0.002 0.000 {built-in method builtins.hasattr} + 15940 0.001 0.000 0.001 0.000 {built-in method _abc._abc_instancecheck} + 14620 0.001 0.000 0.001 0.000 :315(__subclasshook__) + 15580 0.001 0.000 0.001 0.000 {method 'append' of 'list' objects} + 120 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 120 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.all} + 240 0.000 0.000 0.000 0.000 apply_func.py:65() + 120 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 360 0.000 0.000 0.000 0.000 {method 'items' of 'collections.OrderedDict' objects} + 120 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 4 0.000 0.000 0.000 0.000 apply_func.py:63(__subclasshook__) + 4 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 4 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + + + +Profile stats for: [LightningModule]TimeNet.on_after_batch_transfer + 840 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 120 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 120 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 120 0.000 0.000 0.000 0.000 hooks.py:641(on_after_batch_transfer) + 120 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_batch_start + 840 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 120 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 120 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 120 0.000 0.000 0.000 0.000 hooks.py:68(on_train_batch_start) + 120 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Strategy]SingleDeviceStrategy.on_train_batch_start + 840 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 120 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 120 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 120 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 strategy.py:577(on_train_batch_start) + 120 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: run_training_batch + 4560 function calls (4440 primitive calls) in 0.836 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.836 0.007 manual.py:91(run) + 120 0.000 0.000 0.836 0.007 manual.py:104(advance) + 120 0.000 0.000 0.836 0.007 call.py:294(_call_strategy_hook) + 120 0.000 0.000 0.835 0.007 contextlib.py:132(__enter__) + 120 0.000 0.000 0.835 0.007 {built-in method builtins.next} + 120 0.000 0.000 0.835 0.007 profiler.py:55(profile) + 120 0.000 0.000 0.835 0.007 advanced.py:65(start) + 120 0.835 0.007 0.835 0.007 {method 'enable' of '_lsprof.Profiler' objects} + 120 0.000 0.000 0.000 0.000 module.py:1711(__setattr__) + 360/240 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 240 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 120 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 120 0.000 0.000 0.000 0.000 manual.py:98(on_run_start) + 120 0.000 0.000 0.000 0.000 parameter.py:8(__instancecheck__) + 120 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 120 0.000 0.000 0.000 0.000 __init__.py:1467(debug) + 600 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 360 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 __init__.py:1734(isEnabledFor) + 240 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 120 0.000 0.000 0.000 0.000 module.py:295(automatic_optimization) + 240 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 120 0.000 0.000 0.000 0.000 contextlib.py:428(__init__) + 120 0.000 0.000 0.000 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 120 0.000 0.000 0.000 0.000 {method 'values' of 'collections.OrderedDict' objects} + 120 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 120 0.000 0.000 0.000 0.000 contextlib.py:431(__enter__) + + + +Profile stats for: [Strategy]SingleDeviceStrategy.training_step + 43680 function calls (43200 primitive calls) in 0.834 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.834 0.007 strategy.py:379(training_step) + 120 0.001 0.000 0.833 0.007 time_net.py:776(training_step) + 120 0.000 0.000 0.384 0.003 module.py:1058(manual_backward) + 120 0.000 0.000 0.384 0.003 strategy.py:191(backward) + 120 0.000 0.000 0.384 0.003 precision.py:45(pre_backward) + 120 0.000 0.000 0.383 0.003 call.py:137(_call_lightning_module_hook) + 240 0.000 0.000 0.383 0.002 contextlib.py:132(__enter__) + 240 0.000 0.000 0.382 0.002 {built-in method builtins.next} + 120 0.000 0.000 0.382 0.003 profiler.py:55(profile) + 120 0.000 0.000 0.382 0.003 advanced.py:65(start) + 120 0.382 0.003 0.382 0.003 {method 'enable' of '_lsprof.Profiler' objects} + 120 0.004 0.000 0.238 0.002 time_net.py:760(loss_func) + 120 0.015 0.000 0.197 0.002 time_net.py:513(forward) + 360 0.000 0.000 0.192 0.001 module.py:1528(_wrapped_call_impl) + 360 0.001 0.000 0.192 0.001 module.py:1534(_call_impl) + 120 0.017 0.000 0.144 0.001 piecewise_linear.py:53(forward) + 120 0.076 0.001 0.076 0.001 {method 'mean' of 'torch._C.TensorBase' objects} + 120 0.050 0.000 0.074 0.001 time_net.py:877(_get_time_based_sample_weight) + 120 0.063 0.001 0.063 0.001 {built-in method torch.tensor} + 120 0.027 0.000 0.045 0.000 piecewise_linear.py:230(compute_m_t) + 120 0.006 0.000 0.035 0.000 fourier.py:66(forward) + 240 0.015 0.000 0.029 0.000 fourier.py:114(compute_fourier) + 480 0.028 0.000 0.028 0.000 {built-in method torch.sum} + 120 0.028 0.000 0.028 0.000 {built-in method torch._C._nn.one_hot} + 120 0.022 0.000 0.022 0.000 piecewise_linear.py:263(compute_trend) + 240 0.020 0.000 0.020 0.000 {method 'sum' of 'torch._C.TensorBase' objects} + 120 0.011 0.000 0.020 0.000 piecewise_linear.py:206(compute_k_t) + 120 0.000 0.000 0.012 0.000 loss.py:938(forward) + 120 0.000 0.000 0.012 0.000 functional.py:3229(smooth_l1_loss) + 120 0.011 0.000 0.011 0.000 {built-in method torch.cat} + 120 0.000 0.000 0.011 0.000 _compile.py:20(inner) + 120 0.011 0.000 0.011 0.000 {built-in method torch._C._nn.smooth_l1_loss} + 120 0.010 0.000 0.010 0.000 {built-in method torch.clamp} + 120 0.000 0.000 0.008 0.000 decorators.py:36(disable) + 120 0.007 0.000 0.007 0.000 {built-in method torch.ones_like} + 120 0.001 0.000 0.007 0.000 eval_frame.py:351(__call__) + 120 0.007 0.000 0.007 0.000 {built-in method torch.cos} + 120 0.000 0.000 0.003 0.000 inspect.py:936(getsourcefile) + 120 0.000 0.000 0.003 0.000 eval_frame.py:428(_fn) + 120 0.001 0.000 0.003 0.000 optimizer.py:793(zero_grad) + 480 0.002 0.000 0.002 0.000 module.py:1711(__setattr__) + 120 0.000 0.000 0.002 0.000 trace_rules.py:3377(check) + 120 0.000 0.000 0.002 0.000 trace_rules.py:3342(check_verbose) + 480 0.002 0.000 0.002 0.000 {built-in method torch.zeros} + 120 0.000 0.000 0.002 0.000 :16(exists) + 120 0.002 0.000 0.002 0.000 {built-in method posix.stat} + 1560 0.002 0.000 0.002 0.000 {method 'unsqueeze' of 'torch._C.TensorBase' objects} +5040/4560 0.001 0.000 0.001 0.000 {built-in method builtins.isinstance} + 240 0.000 0.000 0.001 0.000 package_importer.py:694(_patched_getfile) + 600 0.001 0.000 0.001 0.000 {method 'permute' of 'torch._C.TensorBase' objects} + 120 0.000 0.000 0.001 0.000 trace_rules.py:3432(lookup_inner) + 120 0.000 0.000 0.001 0.000 call.py:185(_call_callback_hooks) + 120 0.000 0.000 0.001 0.000 profiler.py:604(__enter__) + 240 0.000 0.000 0.001 0.000 inspect.py:896(getfile) + 120 0.000 0.000 0.001 0.000 _ops.py:846(__call__) + 360 0.000 0.000 0.001 0.000 {built-in method builtins.any} + 120 0.001 0.000 0.001 0.000 {built-in method torch._ops.profiler._record_function_enter_new} + 1680 0.001 0.000 0.001 0.000 module.py:1696(__getattr__) + 120 0.000 0.000 0.001 0.000 eval_frame.py:550(__init__) + 120 0.000 0.000 0.001 0.000 trace_rules.py:3275(check_file) + 120 0.000 0.000 0.000 0.000 functional.py:47(broadcast_tensors) + 120 0.000 0.000 0.000 0.000 utils.py:862(getfile) + 120 0.000 0.000 0.000 0.000 profiler.py:610(__exit__) + 120 0.000 0.000 0.000 0.000 eval_frame.py:290(__init__) + 2400 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 120 0.000 0.000 0.000 0.000 module.py:164(optimizers) + 120 0.000 0.000 0.000 0.000 functools.py:35(update_wrapper) + 480 0.000 0.000 0.000 0.000 parameter.py:8(__instancecheck__) + 240 0.000 0.000 0.000 0.000 container.py:734(__getitem__) + 840 0.000 0.000 0.000 0.000 trace_rules.py:3279() + 120 0.000 0.000 0.000 0.000 eval_frame.py:448() + 480 0.000 0.000 0.000 0.000 device_dtype_mixin.py:39(device) + 240 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 360 0.000 0.000 0.000 0.000 base.py:127(__instancecheck__) + 240 0.000 0.000 0.000 0.000 {method 'detach' of 'torch._C.TensorBase' objects} + 120 0.000 0.000 0.000 0.000 eval_frame.py:141(change) + 120 0.000 0.000 0.000 0.000 _ops.py:591(__call__) + 600 0.000 0.000 0.000 0.000 optimizer.py:169(__getattr__) + 120 0.000 0.000 0.000 0.000 profiler.py:593(__init__) + 360 0.000 0.000 0.000 0.000 inspect.py:943() + 120 0.000 0.000 0.000 0.000 {built-in method torch._ops.profiler.} + 120 0.000 0.000 0.000 0.000 precision.py:167(train_step_context) + 120 0.000 0.000 0.000 0.000 {built-in method torch.broadcast_tensors} + 360 0.000 0.000 0.000 0.000 {built-in method torch._C._get_tracing_state} + 360 0.000 0.000 0.000 0.000 eval_frame.py:265(innermost_fn) + 240 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 600 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 120 0.000 0.000 0.000 0.000 trace_rules.py:2840(is_aten_op_or_tensor_method) + 120 0.000 0.000 0.000 0.000 {built-in method torch.unsqueeze} + 1800 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 480 0.000 0.000 0.000 0.000 inspect.py:946() + 240 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 240 0.000 0.000 0.000 0.000 __init__.py:1467(debug) + 120 0.000 0.000 0.000 0.000 eval_frame.py:119(backend_cache_manager) + 480 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 600 0.000 0.000 0.000 0.000 {method 'endswith' of 'str' objects} + 480 0.000 0.000 0.000 0.000 inspect.py:292(isclass) + 240 0.000 0.000 0.000 0.000 container.py:725(_key_to_attr) + 360 0.000 0.000 0.000 0.000 module.py:215(trainer) + 720 0.000 0.000 0.000 0.000 {method 'startswith' of 'str' objects} + 240 0.000 0.000 0.000 0.000 inspect.py:456(istraceback) + 1200 0.000 0.000 0.000 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 120 0.000 0.000 0.000 0.000 precision.py:68(forward_context) + 240 0.000 0.000 0.000 0.000 inspect.py:378(isfunction) + 240 0.000 0.000 0.000 0.000 inspect.py:283(ismodule) + 600 0.000 0.000 0.000 0.000 {built-in method builtins.setattr} + 720 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 120 0.000 0.000 0.000 0.000 _VF.py:26(__getattr__) + 240 0.000 0.000 0.000 0.000 strategy.py:93(precision_plugin) + 120 0.000 0.000 0.000 0.000 time_net.py:390(_compute_quantile_forecasts_from_diffs) + 840 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 240 0.000 0.000 0.000 0.000 inspect.py:466(isframe) + 120 0.000 0.000 0.000 0.000 functools.py:65(wraps) + 120 0.000 0.000 0.000 0.000 module.py:1361(_verify_is_manual_optimization) + 240 0.000 0.000 0.000 0.000 inspect.py:300(ismethod) + 120 0.000 0.000 0.000 0.000 utils.py:435(hashable) + 240 0.000 0.000 0.000 0.000 {method 'size' of 'torch._C.TensorBase' objects} + 240 0.000 0.000 0.000 0.000 inspect.py:480(iscode) + 120 0.000 0.000 0.000 0.000 typing.py:349(inner) + 120 0.000 0.000 0.000 0.000 :2(__init__) + 240 0.000 0.000 0.000 0.000 __init__.py:1734(isEnabledFor) + 240 0.000 0.000 0.000 0.000 {built-in method torch._C._dynamo.eval_frame.set_eval_frame} + 480 0.000 0.000 0.000 0.000 {method 'keys' of 'collections.OrderedDict' objects} + 480 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 240 0.000 0.000 0.000 0.000 strategy.py:351(model) + 120 0.000 0.000 0.000 0.000 eval_frame.py:149(revert) + 120 0.000 0.000 0.000 0.000 {method 'setdefault' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 _reduction.py:7(get_enum) + 120 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 contextlib.py:751(__init__) + 240 0.000 0.000 0.000 0.000 eval_frame.py:261(always_false) + 120 0.000 0.000 0.000 0.000 module.py:295(automatic_optimization) + 120 0.000 0.000 0.000 0.000 {built-in method torch._C._has_torch_function_variadic} + 120 0.000 0.000 0.000 0.000 {method '__exit__' of 'torch._C.DisableTorchFunctionSubclass' objects} + 120 0.000 0.000 0.000 0.000 {built-in method torch._C._has_torch_function} + 120 0.000 0.000 0.000 0.000 strategy.py:345(pre_backward) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.id} + 120 0.000 0.000 0.000 0.000 eval_frame.py:257(nothing) + 120 0.000 0.000 0.000 0.000 _jit_internal.py:1120(is_scripting) + 120 0.000 0.000 0.000 0.000 contextlib.py:754(__enter__) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.hash} + 120 0.000 0.000 0.000 0.000 __init__.py:127(annotate) + 120 0.000 0.000 0.000 0.000 {method 'items' of 'collections.OrderedDict' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_before_backward + 840 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 120 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 120 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 120 0.000 0.000 0.000 0.000 hooks.py:280(on_before_backward) + 120 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_after_backward + 840 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 120 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 120 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 120 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 hooks.py:289(on_after_backward) + 120 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: optimizer_step + 10320 function calls (9960 primitive calls) in 0.200 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.200 0.002 strategy.py:219(optimizer_step) + 120 0.000 0.000 0.200 0.002 precision.py:112(optimizer_step) + 120 0.000 0.000 0.199 0.002 lr_scheduler.py:70(wrapper) + 120 0.000 0.000 0.199 0.002 optimizer.py:374(wrapper) + 120 0.000 0.000 0.198 0.002 optimizer.py:58(_use_grad) + 120 0.000 0.000 0.198 0.002 adamw.py:152(step) + 120 0.000 0.000 0.197 0.002 precision.py:95(_wrap_closure) + 120 0.000 0.000 0.197 0.002 precision.py:83(_after_closure) + 120 0.000 0.000 0.196 0.002 call.py:137(_call_lightning_module_hook) + 120 0.000 0.000 0.196 0.002 contextlib.py:132(__enter__) + 120 0.000 0.000 0.196 0.002 {built-in method builtins.next} + 120 0.000 0.000 0.196 0.002 profiler.py:55(profile) + 120 0.000 0.000 0.196 0.002 advanced.py:65(start) + 120 0.196 0.002 0.196 0.002 {method 'enable' of '_lsprof.Profiler' objects} + 120 0.000 0.000 0.001 0.000 call.py:185(_call_callback_hooks) + 360 0.000 0.000 0.001 0.000 module.py:1711(__setattr__) + 120 0.000 0.000 0.001 0.000 profiler.py:604(__enter__) + 120 0.000 0.000 0.001 0.000 _ops.py:846(__call__) + 120 0.000 0.000 0.000 0.000 {built-in method torch._ops.profiler._record_function_enter_new} + 1200/840 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 120 0.000 0.000 0.000 0.000 optimizer.py:327(_cuda_graph_capture_health_check) + 360 0.000 0.000 0.000 0.000 parameter.py:8(__instancecheck__) + 120 0.000 0.000 0.000 0.000 profiler.py:593(__init__) + 120 0.000 0.000 0.000 0.000 _utils.py:851(is_compiling) + 120 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 240 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 120 0.000 0.000 0.000 0.000 grad_mode.py:183(__init__) + 240 0.000 0.000 0.000 0.000 __init__.py:1467(debug) + 120 0.000 0.000 0.000 0.000 _contextlib.py:149(__new__) + 120 0.000 0.000 0.000 0.000 grad_mode.py:134(__enter__) + 120 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 120 0.000 0.000 0.000 0.000 __init__.py:157(is_compiling) + 240 0.000 0.000 0.000 0.000 {built-in method torch._C._set_grad_enabled} + 1080 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 typing.py:349(inner) + 240 0.000 0.000 0.000 0.000 __init__.py:1734(isEnabledFor) + 360 0.000 0.000 0.000 0.000 {built-in method torch.is_grad_enabled} + 120 0.000 0.000 0.000 0.000 module.py:215(trainer) + 360 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 240 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 240 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 360 0.000 0.000 0.000 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 120 0.000 0.000 0.000 0.000 __init__.py:33(is_built) + 120 0.000 0.000 0.000 0.000 {built-in method __new__ of type object at 0x101877ca8} + 240 0.000 0.000 0.000 0.000 {method 'values' of 'collections.OrderedDict' objects} + 120 0.000 0.000 0.000 0.000 strategy.py:93(precision_plugin) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 120 0.000 0.000 0.000 0.000 _jit_internal.py:1120(is_scripting) + 120 0.000 0.000 0.000 0.000 optimizer.py:34(do_nothing_closure) + 120 0.000 0.000 0.000 0.000 decorators.py:148(graph_break) + 120 0.000 0.000 0.000 0.000 __init__.py:127(annotate) + 120 0.000 0.000 0.000 0.000 typing.py:2246(cast) + + + +Profile stats for: [LightningModule]TimeNet.on_before_optimizer_step + 840 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 120 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 120 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 120 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 hooks.py:298(on_before_optimizer_step) + 120 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_batch_end + 840 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 120 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 120 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 120 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 120 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 120 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 120 0.000 0.000 0.000 0.000 hooks.py:79(on_train_batch_end) + 120 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_epoch_end + 70 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 10 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 10 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 10 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 10 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 10 0.000 0.000 0.000 0.000 hooks.py:214(on_train_epoch_end) + 10 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 10 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_end + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 hooks.py:47(on_train_end) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Strategy]SingleDeviceStrategy.on_train_end + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 strategy.py:561(on_train_end) + + + +Profile stats for: [LightningModule]TimeNet.on_fit_end + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 hooks.py:37(on_fit_end) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.teardown + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:447(teardown) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + +FIT Profiler Report +Profile stats for: [LightningModule]TimeNet.configure_callbacks + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 module.py:936(configure_callbacks) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]LearningRateFinder.setup + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 1 0.000 0.000 0.000 0.000 callback.py:58(setup) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]ProgressBar.setup + 13 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 progress_bar.py:171(setup) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1241(is_global_zero) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 2 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 single_device.py:81(is_global_zero) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + + + +Profile stats for: [LightningModule]TimeNet.setup + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 hooks.py:420(setup) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.configure_optimizers + 1177 function calls (1035 primitive calls) in 0.003 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.003 0.003 time_net.py:863(configure_optimizers) + 1 0.000 0.000 0.003 0.003 trainer.py:1653(estimated_stepping_batches) + 1 0.000 0.000 0.003 0.003 fit_loop.py:213(setup_data) + 2 0.002 0.001 0.002 0.001 data.py:92(has_len_all_ranks) + 2 0.000 0.000 0.000 0.000 {built-in method torch.tensor} + 1 0.000 0.000 0.000 0.000 adamw.py:14(__init__) + 1 0.000 0.000 0.000 0.000 optimizer.py:250(__init__) + 1 0.000 0.000 0.000 0.000 _compile.py:20(inner) + 1 0.000 0.000 0.000 0.000 decorators.py:36(disable) + 1 0.000 0.000 0.000 0.000 eval_frame.py:351(__call__) + 95 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 5/1 0.000 0.000 0.000 0.000 {built-in method builtins.iter} + 1 0.000 0.000 0.000 0.000 fetchers.py:102(__iter__) + 1 0.000 0.000 0.000 0.000 fetchers.py:49(__iter__) + 11 0.000 0.000 0.000 0.000 :117(__instancecheck__) + 11 0.000 0.000 0.000 0.000 {built-in method _abc._abc_instancecheck} + 1 0.000 0.000 0.000 0.000 data_connector.py:313(_request_dataloader) + 1 0.000 0.000 0.000 0.000 data_connector.py:468(_process_dataloader) + 54/7 0.000 0.000 0.000 0.000 :121(__subclasscheck__) + 54/7 0.000 0.000 0.000 0.000 {built-in method _abc._abc_subclasscheck} + 1 0.000 0.000 0.000 0.000 combined_loader.py:347(__iter__) + 5 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 combined_loader.py:90(__iter__) + 1 0.000 0.000 0.000 0.000 combined_loader.py:41(__iter__) + 4 0.000 0.000 0.000 0.000 data.py:357(_replace_dunder_methods) + 1 0.000 0.000 0.000 0.000 combined_loader.py:43() + 1 0.000 0.000 0.000 0.000 utilities.py:135(_select_data_fetcher) + 1 0.000 0.000 0.000 0.000 dataloader.py:426(__iter__) + 1 0.000 0.000 0.000 0.000 dataloader.py:382(_get_iterator) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3377(check) + 2 0.000 0.000 0.000 0.000 data.py:43(has_iterable_dataset) + 1 0.000 0.000 0.000 0.000 dataloader.py:659(__init__) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3342(check_verbose) + 2 0.000 0.000 0.000 0.000 contextlib.py:132(__enter__) + 6 0.000 0.000 0.000 0.000 module.py:2207(parameters) + 6 0.000 0.000 0.000 0.000 module.py:2232(named_parameters) + 1 0.000 0.000 0.000 0.000 signature_utils.py:18(is_param_in_hook_signature) + 6 0.000 0.000 0.000 0.000 module.py:2193(_named_members) + 1 0.000 0.000 0.000 0.000 inspect.py:1336(getfullargspec) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:1638(__init__) + 1 0.000 0.000 0.000 0.000 inspect.py:936(getsourcefile) + 1 0.000 0.000 0.000 0.000 dataloader.py:565(__init__) + 43/22 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 1 0.000 0.000 0.000 0.000 data_connector.py:407(_worker_check) + 28/9 0.000 0.000 0.000 0.000 module.py:2369(named_modules) + 2/1 0.000 0.000 0.000 0.000 inspect.py:2428(_signature_from_callable) + 7/4 0.000 0.000 0.000 0.000 data.py:47(sized_len) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3432(lookup_inner) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:35(__init__) + 1 0.000 0.000 0.000 0.000 eval_frame.py:428(_fn) + 1 0.000 0.000 0.000 0.000 inspect.py:2333(_signature_from_function) + 8 0.000 0.000 0.000 0.000 functools.py:35(update_wrapper) + 1 0.000 0.000 0.000 0.000 data_connector.py:175(_prepare_dataloader) + 3 0.000 0.000 0.000 0.000 rank_zero.py:36(wrapped_fn) + 3 0.000 0.000 0.000 0.000 combined_loader.py:355(__len__) + 1 0.000 0.000 0.000 0.000 :16(exists) + 5 0.000 0.000 0.000 0.000 dataloader.py:457(__len__) + 1 0.000 0.000 0.000 0.000 combined_loader.py:284(__init__) + 1 0.000 0.000 0.000 0.000 {built-in method posix.stat} + 3 0.000 0.000 0.000 0.000 combined_loader.py:96(__len__) + 1 0.000 0.000 0.000 0.000 data_connector.py:167(_requires_distributed_sampler) + 6 0.000 0.000 0.000 0.000 metric.py:944(__hash__) + 1 0.000 0.000 0.000 0.000 accelerator_connector.py:609(is_distributed) + 1 0.000 0.000 0.000 0.000 _pytree.py:18(_tree_flatten) + 96 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 1 0.000 0.000 0.000 0.000 optimizer.py:863(add_param_group) + 4 0.000 0.000 0.000 0.000 data.py:330(_wrap_attr_method) + 1 0.000 0.000 0.000 0.000 fetchers.py:139(reset) + 1 0.000 0.000 0.000 0.000 eval_frame.py:550(__init__) + 1 0.000 0.000 0.000 0.000 fetchers.py:71(reset) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3275(check_file) + 2 0.000 0.000 0.000 0.000 package_importer.py:694(_patched_getfile) + 3 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 5 0.000 0.000 0.000 0.000 sampler.py:297(__len__) + 5 0.000 0.000 0.000 0.000 enums.py:81(__eq__) + 1 0.000 0.000 0.000 0.000 eval_frame.py:290(__init__) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:87(_initial_step) + 2 0.000 0.000 0.000 0.000 inheritance.py:19(get_all_subclasses) + 1 0.000 0.000 0.000 0.000 dataloader.py:93(_get_distributed_settings) + 2 0.000 0.000 0.000 0.000 rank_zero.py:76(rank_zero_warn) + 3 0.000 0.000 0.000 0.000 inspect.py:2686(__init__) + 1 0.000 0.000 0.000 0.000 data.py:438(suggested_max_num_workers) + 2 0.000 0.000 0.000 0.000 inspect.py:896(getfile) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:131(step) + 3 0.000 0.000 0.000 0.000 combined_loader.py:404(_get_iterables_lengths) + 3 0.000 0.000 0.000 0.000 {built-in method builtins.any} + 2 0.000 0.000 0.000 0.000 rank_zero.py:72(_warn) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:57(with_counter) + 2 0.000 0.000 0.000 0.000 inheritance.py:8(get_all_subclasses_iterator) + 1 0.000 0.000 0.000 0.000 trace_rules.py:2840(is_aten_op_or_tensor_method) + 3 0.000 0.000 0.000 0.000 combined_loader.py:405() + 48 0.000 0.000 0.000 0.000 {built-in method builtins.setattr} + 2 0.000 0.000 0.000 0.000 data.py:283(_wrap_init_method) + 1 0.000 0.000 0.000 0.000 {method 'random_' of 'torch._C.TensorBase' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1173(num_devices) + 2 0.000 0.000 0.000 0.000 __init__.py:1734(isEnabledFor) + 13 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects} + 1 0.000 0.000 0.000 0.000 __init__.py:1467(debug) + 2 0.000 0.000 0.000 0.000 {built-in method _warnings.warn} + 1 0.000 0.000 0.000 0.000 data.py:245(_auto_add_worker_init_fn) + 1 0.000 0.000 0.000 0.000 rank_zero.py:66(rank_zero_info) + 1 0.000 0.000 0.000 0.000 trainer.py:1156(device_ids) + 1 0.000 0.000 0.000 0.000 data.py:453(_num_cpus_available) + 1 0.000 0.000 0.000 0.000 distributed_c10d.py:973(is_initialized) + 1 0.000 0.000 0.000 0.000 rank_zero.py:60(_info) + 1 0.000 0.000 0.000 0.000 combined_loader.py:313(flattened) + 1 0.000 0.000 0.000 0.000 _pytree.py:6(_is_leaf_or_primitive_container) + 1 0.000 0.000 0.000 0.000 model_helpers.py:29(is_overridden) + 1 0.000 0.000 0.000 0.000 dataloader.py:74(create_fetcher) + 26 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:1775(get_lr) + 32 0.000 0.000 0.000 0.000 _tensor.py:1059(__hash__) + 2 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 11 0.000 0.000 0.000 0.000 enum.py:192(__get__) + 1 0.000 0.000 0.000 0.000 eval_frame.py:448() + 5 0.000 0.000 0.000 0.000 sampler.py:170(__len__) + 1 0.000 0.000 0.000 0.000 inspect.py:2972(__init__) + 3 0.000 0.000 0.000 0.000 base.py:127(__instancecheck__) + 1 0.000 0.000 0.000 0.000 eval_frame.py:141(change) + 1 0.000 0.000 0.000 0.000 :771(get) + 7 0.000 0.000 0.000 0.000 trace_rules.py:3279() + 1 0.000 0.000 0.000 0.000 eval_frame.py:119(backend_cache_manager) + 1 0.000 0.000 0.000 0.000 {built-in method posix.cpu_count} + 2 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 6 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 1 0.000 0.000 0.000 0.000 states.py:67(dataloader_prefix) + 5 0.000 0.000 0.000 0.000 sampler.py:145(num_samples) + 1 0.000 0.000 0.000 0.000 _pytree.py:761(__init__) + 7 0.000 0.000 0.000 0.000 {built-in method builtins.hash} + 1 0.000 0.000 0.000 0.000 :674(__getitem__) + 1 0.000 0.000 0.000 0.000 _pytree.py:811(tree_unflatten) + 1 0.000 0.000 0.000 0.000 utils.py:862(getfile) + 38 0.000 0.000 0.000 0.000 :262(__subclasshook__) + 3 0.000 0.000 0.000 0.000 eval_frame.py:265(innermost_fn) + 1 0.000 0.000 0.000 0.000 imports.py:47(_habana_available_and_importable) + 1 0.000 0.000 0.000 0.000 distributed_c10d.py:588(WORLD) + 2 0.000 0.000 0.000 0.000 inheritance.py:11(recurse) + 8 0.000 0.000 0.000 0.000 module.py:2260() + 1 0.000 0.000 0.000 0.000 {built-in method torch.empty} + 1 0.000 0.000 0.000 0.000 combined_loader.py:68(__init__) + 1 0.000 0.000 0.000 0.000 platform.py:1119(python_version) + 1 0.000 0.000 0.000 0.000 data_connector.py:282(dataloader) + 1 0.000 0.000 0.000 0.000 _pytree.py:601(_get_node_type) + 11 0.000 0.000 0.000 0.000 enum.py:1243(value) + 8 0.000 0.000 0.000 0.000 functools.py:65(wraps) + 1 0.000 0.000 0.000 0.000 fetchers.py:95(__init__) + 1 0.000 0.000 0.000 0.000 {built-in method torch._C._log_api_usage_once} + 1 0.000 0.000 0.000 0.000 data_connector.py:439(_parse_num_batches) + 1 0.000 0.000 0.000 0.000 overrides.py:10(is_overridden) + 2 0.000 0.000 0.000 0.000 lr_scheduler.py:1764(_annealing_cos) + 6 0.000 0.000 0.000 0.000 dataloader.py:445(_index_sampler) + 2 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 3 0.000 0.000 0.000 0.000 inspect.py:943() + 1 0.000 0.000 0.000 0.000 _pytree.py:734(unflatten) + 6 0.000 0.000 0.000 0.000 combined_loader.py:100() + 4 0.000 0.000 0.000 0.000 inspect.py:3019() + 3 0.000 0.000 0.000 0.000 enum.py:685(__call__) + 1 0.000 0.000 0.000 0.000 _pytree.py:590(_is_namedtuple_instance) + 1 0.000 0.000 0.000 0.000 __init__.py:228(_acquireLock) + 1 0.000 0.000 0.000 0.000 inspect.py:167(get_annotations) + 39 0.000 0.000 0.000 0.000 {built-in method builtins.id} + 1 0.000 0.000 0.000 0.000 optimizer.py:417(_patch_step_function) + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 3 0.000 0.000 0.000 0.000 lr_scheduler.py:1755(_format_param) + 1 0.000 0.000 0.000 0.000 :1() + 1 0.000 0.000 0.000 0.000 context.py:253(get_start_method) + 1 0.000 0.000 0.000 0.000 combined_loader.py:329(limits) + 1 0.000 0.000 0.000 0.000 :756(encode) + 9 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 __init__.py:1479(info) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 fetchers.py:29(__init__) + 1 0.000 0.000 0.000 0.000 dataloader.py:389(multiprocessing_context) + 1 0.000 0.000 0.000 0.000 combined_loader.py:29(__init__) + 1 0.000 0.000 0.000 0.000 trainer.py:1467(current_epoch) + 12 0.000 0.000 0.000 0.000 {method 'setdefault' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1480(max_steps) + 1 0.000 0.000 0.000 0.000 :2(__init__) + 1 0.000 0.000 0.000 0.000 fit_loop.py:434(_load_combined_loader_states) + 23 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects} + 2 0.000 0.000 0.000 0.000 typing.py:349(inner) + 12 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 imports.py:196(__bool__) + 4 0.000 0.000 0.000 0.000 inspect.py:378(isfunction) + 6 0.000 0.000 0.000 0.000 {built-in method builtins.delattr} + 1 0.000 0.000 0.000 0.000 {method 'item' of 'torch._C.TensorBase' objects} + 4 0.000 0.000 0.000 0.000 inspect.py:946() + 2 0.000 0.000 0.000 0.000 inspect.py:283(ismodule) + 3 0.000 0.000 0.000 0.000 {method 'isidentifier' of 'str' objects} + 1 0.000 0.000 0.000 0.000 platform.py:1002(_sys_version) + 1 0.000 0.000 0.000 0.000 __init__.py:9(is_available) + 8 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 __init__.py:237(_releaseLock) + 3 0.000 0.000 0.000 0.000 trainer.py:1472(max_epochs) + 5 0.000 0.000 0.000 0.000 time_dataset.py:842(__len__) + 2 0.000 0.000 0.000 0.000 inspect.py:456(istraceback) + 10 0.000 0.000 0.000 0.000 {method 'lower' of 'str' objects} + 7 0.000 0.000 0.000 0.000 dataloader.py:441(_auto_collation) + 4 0.000 0.000 0.000 0.000 inspect.py:292(isclass) + 1 0.000 0.000 0.000 0.000 fit_loop.py:116(max_steps) + 5 0.000 0.000 0.000 0.000 {method 'endswith' of 'str' objects} + 1 0.000 0.000 0.000 0.000 utils.py:435(hashable) + 2 0.000 0.000 0.000 0.000 inspect.py:300(ismethod) + 6 0.000 0.000 0.000 0.000 {method 'startswith' of 'str' objects} + 1 0.000 0.000 0.000 0.000 __init__.py:1720(getEffectiveLevel) + 2 0.000 0.000 0.000 0.000 inspect.py:480(iscode) + 6 0.000 0.000 0.000 0.000 inspect.py:2739(name) + 3 0.000 0.000 0.000 0.000 enum.py:1091(__new__) + 1 0.000 0.000 0.000 0.000 {built-in method math.ceil} + 16 0.000 0.000 0.000 0.000 {method 'items' of 'collections.OrderedDict' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1133(global_rank) + 2 0.000 0.000 0.000 0.000 inspect.py:466(isframe) + 2 0.000 0.000 0.000 0.000 {built-in method math.cos} + 3 0.000 0.000 0.000 0.000 single_device.py:71(root_device) + 4 0.000 0.000 0.000 0.000 combined_loader.py:308(flattened) + 3 0.000 0.000 0.000 0.000 {built-in method builtins.min} + 1 0.000 0.000 0.000 0.000 imports.py:160(_check_available) + 1 0.000 0.000 0.000 0.000 _pytree.py:764(__post_init__) + 1 0.000 0.000 0.000 0.000 fetch.py:8(__init__) + 1 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.RLock' objects} + 2 0.000 0.000 0.000 0.000 {built-in method torch._C._dynamo.eval_frame.set_eval_frame} + 1 0.000 0.000 0.000 0.000 module.py:215(trainer) + 1 0.000 0.000 0.000 0.000 loop.py:27(restarting) + 3 0.000 0.000 0.000 0.000 {method '__contains__' of 'frozenset' objects} + 6 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 6 0.000 0.000 0.000 0.000 {function VariableTrackerMeta.__instancecheck__ at 0x15226da80} + 1 0.000 0.000 0.000 0.000 {method 'encode' of 'str' objects} + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:178(__init__) + 2 0.000 0.000 0.000 0.000 {method '__subclasses__' of 'type' objects} + 1 0.000 0.000 0.000 0.000 distributed_c10d.py:460(default_pg) + 1 0.000 0.000 0.000 0.000 {method 'values' of 'mappingproxy' objects} + 3 0.000 0.000 0.000 0.000 inspect.py:2751(kind) + 1 0.000 0.000 0.000 0.000 data_connector.py:375(_check_dataloader_iterable) + 1 0.000 0.000 0.000 0.000 trainer.py:1590(loggers) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:51() + 2 0.000 0.000 0.000 0.000 fetchers.py:38(combined_loader) + 1 0.000 0.000 0.000 0.000 __init__.py:1319(disable) + 3 0.000 0.000 0.000 0.000 inspect.py:2747(annotation) + 1 0.000 0.000 0.000 0.000 {method 'isdisjoint' of 'set' objects} + 1 0.000 0.000 0.000 0.000 {built-in method __new__ of type object at 0x101877ca8} + 3 0.000 0.000 0.000 0.000 inspect.py:2743(default) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:25(_check_verbose_deprecated_warning) + 1 0.000 0.000 0.000 0.000 eval_frame.py:149(revert) + 2 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 2 0.000 0.000 0.000 0.000 single_device.py:50(reduce) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:181(__enter__) + 1 0.000 0.000 0.000 0.000 trainer.py:1493(train_dataloader) + 1 0.000 0.000 0.000 0.000 fetchers.py:46(setup) + 1 0.000 0.000 0.000 0.000 _pytree.py:650(is_leaf) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:167() + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:185(__exit__) + 2 0.000 0.000 0.000 0.000 eval_frame.py:261(always_false) + 1 0.000 0.000 0.000 0.000 {method 'release' of '_thread.RLock' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1523(num_training_batches) + 1 0.000 0.000 0.000 0.000 strategy.py:439(process_dataloader) + 1 0.000 0.000 0.000 0.000 inspect.py:3032(parameters) + 1 0.000 0.000 0.000 0.000 inspect.py:3036(return_annotation) + 1 0.000 0.000 0.000 0.000 single_device.py:86(barrier) + 1 0.000 0.000 0.000 0.000 typing.py:2246(cast) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 eval_frame.py:257(nothing) + 1 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects} + + + +Profile stats for: [Callback]LearningRateFinder.on_fit_start + 2084 function calls (1971 primitive calls) in 1.515 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 1.515 1.515 lr_finder.py:128(on_fit_start) + 1 0.000 0.000 1.515 1.515 lr_finder.py:111(lr_find) + 1 0.000 0.000 1.515 1.515 lr_finder.py:210(_lr_find) + 1 0.000 0.000 1.515 1.515 trainer.py:1346(save_checkpoint) + 1 0.000 0.000 1.515 1.515 checkpoint_connector.py:404(dump_checkpoint) + 2 0.000 0.000 1.514 0.757 contextlib.py:132(__enter__) + 2 0.000 0.000 1.514 0.757 {built-in method builtins.next} + 1 0.000 0.000 1.514 1.514 call.py:228(_call_callbacks_on_save_checkpoint) + 1 0.000 0.000 1.514 1.514 profiler.py:55(profile) + 1 0.000 0.000 1.514 1.514 advanced.py:65(start) + 1 1.514 1.514 1.514 1.514 {method 'enable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 checkpoint_connector.py:499(_get_loops_state_dict) + 8/4 0.000 0.000 0.000 0.000 loop.py:52(state_dict) + 9 0.000 0.000 0.000 0.000 progress.py:24(state_dict) + 9 0.000 0.000 0.000 0.000 dataclasses.py:1263(asdict) + 102/9 0.000 0.000 0.000 0.000 dataclasses.py:1287(_asdict_inner) + 1 0.000 0.000 0.000 0.000 strategy.py:173(optimizer_state) + 1 0.000 0.000 0.000 0.000 _compile.py:20(inner) + 1 0.000 0.000 0.000 0.000 seed.py:22(isolate_rng) + 1 0.000 0.000 0.000 0.000 seed.py:105(_collect_rng_states) + 438/433 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 1 0.000 0.000 0.000 0.000 checkpoint_connector.py:496(_get_lightning_module_state_dict) + 1 0.000 0.000 0.000 0.000 strategy.py:473(lightning_module_state_dict) + 10/1 0.000 0.000 0.000 0.000 module.py:1845(state_dict) + 1 0.000 0.000 0.000 0.000 decorators.py:36(disable) + 70 0.000 0.000 0.000 0.000 copy.py:128(deepcopy) + 1 0.000 0.000 0.000 0.000 eval_frame.py:351(__call__) + 1 0.000 0.000 0.000 0.000 fit_loop.py:415(on_save_checkpoint) + 1 0.000 0.000 0.000 0.000 combined_loader.py:378(_state_dicts) + 1 0.000 0.000 0.000 0.000 combined_loader.py:380() + 1 0.000 0.000 0.000 0.000 typing.py:1975(__instancecheck__) + 1 0.000 0.000 0.000 0.000 {method 'get_state' of 'numpy.random.mtrand.RandomState' objects} + 32 0.000 0.000 0.000 0.000 dataclasses.py:1233(fields) + 111 0.000 0.000 0.000 0.000 dataclasses.py:1251(_is_dataclass_instance) + 139/137 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 1 0.000 0.000 0.000 0.000 eval_frame.py:428(_fn) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.issubclass} + 1 0.000 0.000 0.000 0.000 :121(__subclasscheck__) + 4 0.000 0.000 0.000 0.000 typing.py:1896(_get_protocol_attrs) + 1 0.000 0.000 0.000 0.000 trainer.py:1269(default_root_dir) + 1 0.000 0.000 0.000 0.000 {built-in method _abc._abc_subclasscheck} + 10 0.000 0.000 0.000 0.000 module.py:1806(_save_to_state_dict) + 1 0.000 0.000 0.000 0.000 typing.py:2043(_proto_hook) + 1 0.000 0.000 0.000 0.000 uuid.py:721(uuid4) + 2 0.000 0.000 0.000 0.000 typing.py:1913(_is_callable_members_only) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3377(check) + 1 0.000 0.000 0.000 0.000 optimizer.py:535(state_dict) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3342(check_verbose) + 1 0.000 0.000 0.000 0.000 inspect.py:936(getsourcefile) + 1 0.000 0.000 0.000 0.000 lr_finder.py:48(_determine_lr_attr_name) + 2 0.000 0.000 0.000 0.000 parsing.py:278(lightning_hasattr) + 4 0.000 0.000 0.000 0.000 metric.py:855(state_dict) + 160 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 2 0.000 0.000 0.000 0.000 parsing.py:264(_lightning_get_first_attr_holder) + 125 0.000 0.000 0.000 0.000 dataclasses.py:1248() + 1 0.000 0.000 0.000 0.000 cloud_io.py:135(_is_local_file_protocol) + 1 0.000 0.000 0.000 0.000 random.py:166(getstate) + 1 0.000 0.000 0.000 0.000 optimizer.py:601() + 2 0.000 0.000 0.000 0.000 package_importer.py:694(_patched_getfile) + 1 0.000 0.000 0.000 0.000 utils.py:436(get_protocol) + 1 0.000 0.000 0.000 0.000 optimizer.py:593(pack_group) + 2 0.000 0.000 0.000 0.000 parsing.py:235(_lightning_get_all_attr_holders) + 144 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 trace_rules.py:3432(lookup_inner) + 6 0.000 0.000 0.000 0.000 {method 'detach' of 'torch._C.TensorBase' objects} + 2 0.000 0.000 0.000 0.000 inspect.py:896(getfile) + 1 0.000 0.000 0.000 0.000 {function Random.getstate at 0x101236520} + 1 0.000 0.000 0.000 0.000 :16(exists) + 1 0.000 0.000 0.000 0.000 __init__.py:198(split) + 1 0.000 0.000 0.000 0.000 uuid.py:139(__init__) + 68 0.000 0.000 0.000 0.000 {method 'startswith' of 'str' objects} + 1 0.000 0.000 0.000 0.000 random.py:21(get_rng_state) + 1 0.000 0.000 0.000 0.000 {built-in method posix.stat} + 3 0.000 0.000 0.000 0.000 {built-in method builtins.any} + 96 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects} + 86 0.000 0.000 0.000 0.000 {built-in method builtins.id} + 1 0.000 0.000 0.000 0.000 trace_rules.py:3275(check_file) + 1 0.000 0.000 0.000 0.000 {built-in method posix.urandom} + 3 0.000 0.000 0.000 0.000 {built-in method builtins.all} + 1 0.000 0.000 0.000 0.000 functools.py:35(update_wrapper) + 2 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 1 0.000 0.000 0.000 0.000 utils.py:862(getfile) + 1 0.000 0.000 0.000 0.000 eval_frame.py:550(__init__) + 1 0.000 0.000 0.000 0.000 :71(join) + 1 0.000 0.000 0.000 0.000 trainer.py:1458(global_step) + 1 0.000 0.000 0.000 0.000 module.py:1711(__setattr__) + 70 0.000 0.000 0.000 0.000 copy.py:182(_deepcopy_atomic) + 1 0.000 0.000 0.000 0.000 {method 'get_state' of 'torch._C.Generator' objects} + 1 0.000 0.000 0.000 0.000 __init__.py:105(is_available) + 2 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 1 0.000 0.000 0.000 0.000 training_epoch_loop.py:99(global_step) + 1 0.000 0.000 0.000 0.000 eval_frame.py:290(__init__) + 3 0.000 0.000 0.000 0.000 base.py:127(__instancecheck__) + 1 0.000 0.000 0.000 0.000 __init__.py:96(_is_compiled) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:93(state_dict) + 1 0.000 0.000 0.000 0.000 eval_frame.py:448() + 1 0.000 0.000 0.000 0.000 :389(normpath) + 1 0.000 0.000 0.000 0.000 uuid.py:280(__str__) + 6 0.000 0.000 0.000 0.000 typing.py:1915() + 1 0.000 0.000 0.000 0.000 optimizer.py:596() + 7 0.000 0.000 0.000 0.000 trace_rules.py:3279() + 1 0.000 0.000 0.000 0.000 :229(expanduser) + 6 0.000 0.000 0.000 0.000 hparams_mixin.py:152(hparams) + 1 0.000 0.000 0.000 0.000 eval_frame.py:141(change) + 4 0.000 0.000 0.000 0.000 :117(__instancecheck__) + 32 0.000 0.000 0.000 0.000 {method 'values' of 'dict' objects} + 4 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 optimizer.py:595() + 1 0.000 0.000 0.000 0.000 call.py:217(_call_callbacks_state_dict) + 1 0.000 0.000 0.000 0.000 module.py:1696(__getattr__) + 30 0.000 0.000 0.000 0.000 {method 'items' of 'collections.OrderedDict' objects} + 1 0.000 0.000 0.000 0.000 __init__.py:272(_compile) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:99() + 3 0.000 0.000 0.000 0.000 eval_frame.py:265(innermost_fn) + 1 0.000 0.000 0.000 0.000 {built-in method posix._path_normpath} + 1 0.000 0.000 0.000 0.000 optimizer.py:598() + 1 0.000 0.000 0.000 0.000 trainer.py:1129(precision_plugin) + 4 0.000 0.000 0.000 0.000 inspect.py:946() + 22 0.000 0.000 0.000 0.000 {method 'values' of 'collections.OrderedDict' objects} + 11 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 {method 'split' of 're.Pattern' objects} + 3 0.000 0.000 0.000 0.000 inspect.py:943() + 2 0.000 0.000 0.000 0.000 typing.py:349(inner) + 1 0.000 0.000 0.000 0.000 parameter.py:8(__instancecheck__) + 1 0.000 0.000 0.000 0.000 trace_rules.py:2840(is_aten_op_or_tensor_method) + 4 0.000 0.000 0.000 0.000 {built-in method _abc._abc_instancecheck} + 15 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 4 0.000 0.000 0.000 0.000 inspect.py:292(isclass) + 6 0.000 0.000 0.000 0.000 {method 'endswith' of 'str' objects} + 1 0.000 0.000 0.000 0.000 eval_frame.py:119(backend_cache_manager) + 1 0.000 0.000 0.000 0.000 trainer.py:1183(optimizers) + 11 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 utils.py:327(stringify_path) + 1 0.000 0.000 0.000 0.000 training_epoch_loop.py:317(on_save_checkpoint) + 8 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1203(model) + 2 0.000 0.000 0.000 0.000 inspect.py:456(istraceback) + 5 0.000 0.000 0.000 0.000 {built-in method builtins.setattr} + 8 0.000 0.000 0.000 0.000 loop.py:40(on_save_checkpoint) + 1 0.000 0.000 0.000 0.000 strategy.py:93(precision_plugin) + 7 0.000 0.000 0.000 0.000 {function VariableTrackerMeta.__instancecheck__ at 0x15226da80} + 2 0.000 0.000 0.000 0.000 typing.py:1991() + 1 0.000 0.000 0.000 0.000 utils.py:435(hashable) + 2 0.000 0.000 0.000 0.000 inspect.py:480(iscode) + 2 0.000 0.000 0.000 0.000 inspect.py:283(ismodule) + 2 0.000 0.000 0.000 0.000 inspect.py:378(isfunction) + 2 0.000 0.000 0.000 0.000 inspect.py:466(isframe) + 1 0.000 0.000 0.000 0.000 trainer.py:1191(lr_scheduler_configs) + 4 0.000 0.000 0.000 0.000 {method 'keys' of 'mappingproxy' objects} + 1 0.000 0.000 0.000 0.000 functools.py:65(wraps) + 2 0.000 0.000 0.000 0.000 inspect.py:300(ismethod) + 2 0.000 0.000 0.000 0.000 {built-in method torch._C._dynamo.eval_frame.set_eval_frame} + 7 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 1 0.000 0.000 0.000 0.000 :41(_get_sep) + 6 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 3 0.000 0.000 0.000 0.000 {built-in method posix.fspath} + 2 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 :2(__init__) + 1 0.000 0.000 0.000 0.000 callback.py:32(state_key) + 1 0.000 0.000 0.000 0.000 trainer.py:1467(current_epoch) + 1 0.000 0.000 0.000 0.000 {method 'count' of 'list' objects} + 4 0.000 0.000 0.000 0.000 {method 'keys' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'get' of 'mappingproxy' objects} + 1 0.000 0.000 0.000 0.000 optimizer.py:603() + 1 0.000 0.000 0.000 0.000 eval_frame.py:149(revert) + 2 0.000 0.000 0.000 0.000 callback.py:232(state_dict) + 1 0.000 0.000 0.000 0.000 {built-in method from_bytes} + 1 0.000 0.000 0.000 0.000 {method 'setdefault' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 strategy.py:101(optimizers) + 1 0.000 0.000 0.000 0.000 precision.py:138(state_dict) + 2 0.000 0.000 0.000 0.000 eval_frame.py:261(always_false) + 1 0.000 0.000 0.000 0.000 combined_loader.py:308(flattened) + 1 0.000 0.000 0.000 0.000 hooks.py:692(on_save_checkpoint) + 1 0.000 0.000 0.000 0.000 strategy.py:351(model) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.hash} + 1 0.000 0.000 0.000 0.000 eval_frame.py:257(nothing) + 1 0.000 0.000 0.000 0.000 module.py:295(automatic_optimization) + 1 0.000 0.000 0.000 0.000 single_device.py:90(broadcast) + + + +Profile stats for: [Callback]LearningRateFinder.on_save_checkpoint + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 callback.py:250(on_save_checkpoint) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]ProgressBar.on_save_checkpoint + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 callback.py:250(on_save_checkpoint) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + + + +Profile stats for: [LightningModule]TimeNet.on_save_checkpoint + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:692(on_save_checkpoint) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]_LRCallback.on_train_start + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 callback.py:205(on_train_start) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + + + +Profile stats for: [LightningModule]TimeNet.on_train_start + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:44(on_train_start) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Strategy]SingleDeviceStrategy.on_train_start + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 strategy.py:545(on_train_start) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]_LRCallback.on_train_epoch_start + 40 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 4 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 4 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 4 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 4 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 4 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 4 0.000 0.000 0.000 0.000 callback.py:92(on_train_epoch_start) + 4 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 4 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_epoch_start + 28 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 4 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 4 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 4 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 4 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4 0.000 0.000 0.000 0.000 hooks.py:211(on_train_epoch_start) + 4 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: run_training_epoch + 562 function calls (530 primitive calls) in 1.489 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4 0.000 0.000 1.489 0.372 training_epoch_loop.py:135(run) + 4 0.000 0.000 1.488 0.372 training_epoch_loop.py:192(advance) + 4 0.000 0.000 1.488 0.372 {built-in method builtins.next} + 4 0.000 0.000 1.488 0.372 fetchers.py:119(__next__) + 4 0.000 0.000 1.488 0.372 fetchers.py:55(__next__) + 4 0.000 0.000 1.488 0.372 training_epoch_loop.py:186(_on_before_fetch) + 4 0.000 0.000 1.488 0.372 advanced.py:65(start) + 4 1.488 0.372 1.488 0.372 {method 'enable' of '_lsprof.Profiler' objects} + 4 0.000 0.000 0.000 0.000 training_epoch_loop.py:176(on_run_start) + 15/3 0.000 0.000 0.000 0.000 {built-in method builtins.iter} + 3 0.000 0.000 0.000 0.000 fetchers.py:102(__iter__) + 3 0.000 0.000 0.000 0.000 fetchers.py:49(__iter__) + 3 0.000 0.000 0.000 0.000 combined_loader.py:347(__iter__) + 3 0.000 0.000 0.000 0.000 combined_loader.py:90(__iter__) + 3 0.000 0.000 0.000 0.000 combined_loader.py:41(__iter__) + 3 0.000 0.000 0.000 0.000 combined_loader.py:43() + 3 0.000 0.000 0.000 0.000 dataloader.py:426(__iter__) + 3 0.000 0.000 0.000 0.000 dataloader.py:382(_get_iterator) + 3 0.000 0.000 0.000 0.000 dataloader.py:659(__init__) + 3 0.000 0.000 0.000 0.000 dataloader.py:565(__init__) + 4 0.000 0.000 0.000 0.000 training_epoch_loop.py:147(reset) + 83 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 3 0.000 0.000 0.000 0.000 fetchers.py:139(reset) + 3 0.000 0.000 0.000 0.000 fetchers.py:71(reset) + 30/15 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 6/3 0.000 0.000 0.000 0.000 data.py:47(sized_len) + 3 0.000 0.000 0.000 0.000 combined_loader.py:355(__len__) + 3 0.000 0.000 0.000 0.000 combined_loader.py:96(__len__) + 3/1 0.000 0.000 0.000 0.000 {built-in method builtins.all} + 2 0.000 0.000 0.000 0.000 training_epoch_loop.py:159() + 1 0.000 0.000 0.000 0.000 typing.py:1975(__instancecheck__) + 3 0.000 0.000 0.000 0.000 {method 'random_' of 'torch._C.TensorBase' objects} + 4 0.000 0.000 0.000 0.000 loop.py:32(restarting) + 14 0.000 0.000 0.000 0.000 :117(__instancecheck__) + 3 0.000 0.000 0.000 0.000 combined_loader.py:404(_get_iterables_lengths) + 2 0.000 0.000 0.000 0.000 typing.py:1896(_get_protocol_attrs) + 3 0.000 0.000 0.000 0.000 combined_loader.py:405() + 14 0.000 0.000 0.000 0.000 {built-in method _abc._abc_instancecheck} + 12 0.000 0.000 0.000 0.000 progress.py:172(reset_on_run) + 3 0.000 0.000 0.000 0.000 {built-in method torch.empty} + 4 0.000 0.000 0.000 0.000 training_epoch_loop.py:116(done) + 3 0.000 0.000 0.000 0.000 dataloader.py:93(_get_distributed_settings) + 3 0.000 0.000 0.000 0.000 dataloader.py:457(__len__) + 1 0.000 0.000 0.000 0.000 typing.py:1913(_is_callable_members_only) + 4 0.000 0.000 0.000 0.000 training_epoch_loop.py:106(_is_training_done) + 3 0.000 0.000 0.000 0.000 progress.py:282(reset_on_run) + 3 0.000 0.000 0.000 0.000 progress.py:204(reset_on_run) + 3 0.000 0.000 0.000 0.000 dataloader.py:74(create_fetcher) + 3 0.000 0.000 0.000 0.000 sampler.py:297(__len__) + 6 0.000 0.000 0.000 0.000 progress.py:114(reset) + 3 0.000 0.000 0.000 0.000 progress.py:249(reset_on_run) + 3 0.000 0.000 0.000 0.000 combined_loader.py:68(__init__) + 1 0.000 0.000 0.000 0.000 training_epoch_loop.py:418(_should_check_val_fx) + 1 0.000 0.000 0.000 0.000 training_epoch_loop.py:412(_should_check_val_epoch) + 9 0.000 0.000 0.000 0.000 progress.py:87(reset) + 5 0.000 0.000 0.000 0.000 training_epoch_loop.py:99(global_step) + 1 0.000 0.000 0.000 0.000 trainer.py:1260(enable_validation) + 3 0.000 0.000 0.000 0.000 distributed_c10d.py:973(is_initialized) + 1 0.000 0.000 0.000 0.000 data_connector.py:296(is_defined) + 3 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 3 0.000 0.000 0.000 0.000 combined_loader.py:29(__init__) + 2 0.000 0.000 0.000 0.000 :121(__subclasscheck__) + 3 0.000 0.000 0.000 0.000 sampler.py:170(__len__) + 4 0.000 0.000 0.000 0.000 progress.py:175(reset_on_restart) + 2 0.000 0.000 0.000 0.000 {built-in method _abc._abc_subclasscheck} + 1 0.000 0.000 0.000 0.000 model_helpers.py:29(is_overridden) + 3 0.000 0.000 0.000 0.000 sampler.py:145(num_samples) + 15 0.000 0.000 0.000 0.000 progress.py:56(reset) + 30 0.000 0.000 0.000 0.000 {method 'startswith' of 'str' objects} + 3 0.000 0.000 0.000 0.000 __init__.py:9(is_available) + 3 0.000 0.000 0.000 0.000 distributed_c10d.py:588(WORLD) + 5 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 6 0.000 0.000 0.000 0.000 combined_loader.py:100() + 1 0.000 0.000 0.000 0.000 progress.py:285(reset_on_restart) + 4 0.000 0.000 0.000 0.000 training_epoch_loop.py:331(_num_ready_batches_reached) + 3 0.000 0.000 0.000 0.000 {method 'item' of 'torch._C.TensorBase' objects} + 1 0.000 0.000 0.000 0.000 overrides.py:10(is_overridden) + 1 0.000 0.000 0.000 0.000 progress.py:253(reset_on_restart) + 6 0.000 0.000 0.000 0.000 dataloader.py:445(_index_sampler) + 2 0.000 0.000 0.000 0.000 progress.py:92(reset_on_restart) + 1 0.000 0.000 0.000 0.000 progress.py:119(reset_on_restart) + 3 0.000 0.000 0.000 0.000 typing.py:1915() + 6 0.000 0.000 0.000 0.000 fetchers.py:38(combined_loader) + 6 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 3 0.000 0.000 0.000 0.000 fetch.py:8(__init__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.issubclass} + 4 0.000 0.000 0.000 0.000 {built-in method builtins.vars} + 3 0.000 0.000 0.000 0.000 time_dataset.py:842(__len__) + 9 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 11 0.000 0.000 0.000 0.000 loop.py:27(restarting) + 4 0.000 0.000 0.000 0.000 progress.py:62(reset_on_restart) + 2 0.000 0.000 0.000 0.000 typing.py:1991() + 1 0.000 0.000 0.000 0.000 data_connector.py:304(is_module) + 9 0.000 0.000 0.000 0.000 dataloader.py:441(_auto_collation) + 4 0.000 0.000 0.000 0.000 utilities.py:113(_is_max_limit_reached) + 3 0.000 0.000 0.000 0.000 {built-in method builtins.min} + 5 0.000 0.000 0.000 0.000 module.py:295(automatic_optimization) + 3 0.000 0.000 0.000 0.000 distributed_c10d.py:460(default_pg) + 5 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 4 0.000 0.000 0.000 0.000 trainer.py:1467(current_epoch) + 6 0.000 0.000 0.000 0.000 trainer.py:1523(num_training_batches) + 3 0.000 0.000 0.000 0.000 sampler.py:274(__iter__) + 5 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 4 0.000 0.000 0.000 0.000 combined_loader.py:308(flattened) + 1 0.000 0.000 0.000 0.000 :283(__subclasshook__) + 4 0.000 0.000 0.000 0.000 {method 'values' of 'dict' objects} + 4 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects} + 2 0.000 0.000 0.000 0.000 {method 'keys' of 'mappingproxy' objects} + 2 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 1 0.000 0.000 0.000 0.000 {built-in method math.ceil} + 2 0.000 0.000 0.000 0.000 {method 'keys' of 'dict' objects} + + + +Profile stats for: [_TrainingEpochLoop].train_dataloader_next + 105681 function calls (103502 primitive calls) in 0.111 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 815/163 0.000 0.000 0.111 0.001 {built-in method builtins.next} + 163 0.000 0.000 0.110 0.001 combined_loader.py:339(__next__) + 163 0.000 0.000 0.110 0.001 combined_loader.py:72(__next__) + 163 0.001 0.000 0.109 0.001 dataloader.py:626(__next__) + 163 0.004 0.000 0.106 0.001 dataloader.py:673(_next_data) + 163 0.000 0.000 0.100 0.001 fetch.py:46(fetch) + 163 0.001 0.000 0.087 0.001 fetch.py:51() + 5186 0.005 0.000 0.086 0.000 time_dataset.py:845(__getitem__) + 5186 0.004 0.000 0.081 0.000 time_dataset.py:171(__getitem__) + 5186 0.009 0.000 0.072 0.000 time_dataset.py:297(tabularize_univariate_datetime_single_index) + 5186 0.048 0.000 0.048 0.000 time_dataset.py:156(get_sample_seasonalities) + 163 0.000 0.000 0.013 0.000 collate.py:255(default_collate) + 1467/163 0.002 0.000 0.013 0.000 collate.py:108(collate) + 5186 0.007 0.000 0.012 0.000 time_dataset.py:709(get_sample_targets) + 163 0.000 0.000 0.010 0.000 collate.py:173() + 15558 0.007 0.000 0.007 0.000 {method 'unsqueeze' of 'torch._C.TensorBase' objects} + 489/326 0.001 0.000 0.006 0.000 collate.py:154() + 5186 0.004 0.000 0.004 0.000 time_dataset.py:226(sample_index_to_df_index) + 652 0.001 0.000 0.004 0.000 collate.py:194(collate_tensor_fn) + 652 0.003 0.000 0.003 0.000 {built-in method torch.stack} + 489 0.001 0.000 0.002 0.000 copy.py:66(copy) + 163 0.000 0.000 0.002 0.000 profiler.py:604(__enter__) + 7174 0.001 0.000 0.002 0.000 {built-in method builtins.isinstance} + 163 0.000 0.000 0.002 0.000 dataloader.py:620(_next_index) + 163 0.001 0.000 0.001 0.000 sampler.py:274(__iter__) + 163 0.000 0.000 0.001 0.000 _ops.py:846(__call__) + 163 0.001 0.000 0.001 0.000 {built-in method torch._ops.profiler._record_function_enter_new} + 163 0.000 0.000 0.001 0.000 {built-in method builtins.all} + 489 0.000 0.000 0.001 0.000 {method '__reduce_ex__' of 'object' objects} + 1467 0.000 0.000 0.001 0.000 :117(__instancecheck__) + 815 0.001 0.000 0.001 0.000 collate.py:154() + 163 0.000 0.000 0.001 0.000 profiler.py:610(__exit__) + 5186 0.001 0.000 0.001 0.000 collate.py:168() + 5189 0.000 0.000 0.001 0.000 sampler.py:152(__iter__) + 489 0.000 0.000 0.001 0.000 copyreg.py:113(_slotnames) + 1467 0.000 0.000 0.001 0.000 {built-in method _abc._abc_instancecheck} + 15895 0.001 0.000 0.001 0.000 {built-in method builtins.len} + 163 0.000 0.000 0.000 0.000 _pytree.py:811(tree_unflatten) + 163 0.000 0.000 0.000 0.000 _ops.py:591(__call__) + 195/165 0.000 0.000 0.000 0.000 :121(__subclasscheck__) + 163 0.000 0.000 0.000 0.000 {built-in method torch._ops.profiler.} + 195/165 0.000 0.000 0.000 0.000 {built-in method _abc._abc_subclasscheck} + 5186 0.000 0.000 0.000 0.000 {method 'items' of 'collections.OrderedDict' objects} + 163 0.000 0.000 0.000 0.000 profiler.py:593(__init__) + 489 0.000 0.000 0.000 0.000 copy.py:259(_reconstruct) + 163 0.000 0.000 0.000 0.000 _pytree.py:734(unflatten) + 978 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 163 0.000 0.000 0.000 0.000 training_epoch_loop.py:189(_on_after_fetch) + 815 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 489 0.000 0.000 0.000 0.000 {method 'update' of 'collections.OrderedDict' objects} + 1141 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 7 0.000 0.000 0.000 0.000 {built-in method torch.randperm} + 7 0.000 0.000 0.000 0.000 {method 'tolist' of 'torch._C.TensorBase' objects} + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 typing.py:349(inner) + 652 0.000 0.000 0.000 0.000 worker.py:89(get_worker_info) + 489 0.000 0.000 0.000 0.000 {method 'get' of 'mappingproxy' objects} + 163 0.000 0.000 0.000 0.000 :315(__subclasshook__) + 489 0.000 0.000 0.000 0.000 {built-in method builtins.issubclass} + 163 0.000 0.000 0.000 0.000 _pytree.py:650(is_leaf) + 163 0.000 0.000 0.000 0.000 {method '__exit__' of 'torch._C.DisableTorchFunctionSubclass' objects} + 2 0.000 0.000 0.000 0.000 ipkernel.py:775(_clean_thread_parent_frames) + 163 0.000 0.000 0.000 0.000 __init__.py:127(annotate) + 163 0.000 0.000 0.000 0.000 _jit_internal.py:1120(is_scripting) + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 163 0.000 0.000 0.000 0.000 {built-in method builtins.iter} + 163 0.000 0.000 0.000 0.000 collate.py:237(collate_str_fn) + 7 0.000 0.000 0.000 0.000 sampler.py:145(num_samples) + 4 0.000 0.000 0.000 0.000 {method 'manual_seed' of 'torch._C.Generator' objects} + 4 0.000 0.000 0.000 0.000 {method 'random_' of 'torch._C.TensorBase' objects} + 31 0.000 0.000 0.000 0.000 :409(__subclasshook__) + 4 0.000 0.000 0.000 0.000 {built-in method torch.empty} + 1 0.000 0.000 0.000 0.000 ipkernel.py:790() + 1 0.000 0.000 0.000 0.000 threading.py:1494(enumerate) + 10 0.000 0.000 0.000 0.000 threading.py:1161(ident) + 11 0.000 0.000 0.000 0.000 time_dataset.py:842(__len__) + 4 0.000 0.000 0.000 0.000 {method 'item' of 'torch._C.TensorBase' objects} + 4 0.000 0.000 0.000 0.000 {method 'keys' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 :283(__subclasshook__) + 2 0.000 0.000 0.000 0.000 {method 'values' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.RLock' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_before_batch_transfer + 1141 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 hooks.py:613(on_before_batch_transfer) + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Strategy]SingleDeviceStrategy.batch_to_device + 5216 function calls (5053 primitive calls) in 0.209 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.209 0.001 strategy.py:262(batch_to_device) + 163 0.000 0.000 0.209 0.001 module.py:354(_apply_batch_transfer_handler) + 163 0.000 0.000 0.209 0.001 module.py:336(_call_batch_hook) + 163 0.000 0.000 0.208 0.001 call.py:137(_call_lightning_module_hook) + 163 0.000 0.000 0.207 0.001 contextlib.py:132(__enter__) + 163 0.000 0.000 0.207 0.001 {built-in method builtins.next} + 163 0.000 0.000 0.207 0.001 profiler.py:55(profile) + 163 0.000 0.000 0.207 0.001 advanced.py:65(start) + 163 0.207 0.001 0.207 0.001 {method 'enable' of '_lsprof.Profiler' objects} + 163 0.000 0.000 0.000 0.000 module.py:1711(__setattr__) + 652/489 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 163 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 163 0.000 0.000 0.000 0.000 parameter.py:8(__instancecheck__) + 163 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 163 0.000 0.000 0.000 0.000 __init__.py:1467(debug) + 163 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 163 0.000 0.000 0.000 0.000 data_connector.py:349(get_instance) + 163 0.000 0.000 0.000 0.000 __init__.py:1734(isEnabledFor) + 326 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 489 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 single_device.py:71(root_device) + 326 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 163 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 163 0.000 0.000 0.000 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 163 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + + + +Profile stats for: [LightningModule]TimeNet.transfer_batch_to_device + 174552 function calls (144916 primitive calls) in 0.205 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.205 0.001 hooks.py:564(transfer_batch_to_device) + 163 0.000 0.000 0.205 0.001 apply_func.py:71(move_data_to_device) + 163 0.000 0.000 0.205 0.001 apply_func.py:23(apply_to_collection) + 6653/163 0.009 0.000 0.204 0.001 apply_func.py:84(_apply_to_collection_slow) + 652 0.001 0.000 0.174 0.000 apply_func.py:91(batch_to) + 652 0.173 0.000 0.173 0.000 {method 'to' of 'torch._C.TensorBase' objects} +59684/36658 0.005 0.000 0.017 0.000 {built-in method builtins.isinstance} + 11513 0.002 0.000 0.012 0.000 typing.py:1297(__instancecheck__) + 11513 0.003 0.000 0.010 0.000 typing.py:1572(__subclasscheck__) + 11513 0.002 0.000 0.005 0.000 {built-in method builtins.issubclass} + 5186 0.001 0.000 0.004 0.000 apply_func.py:17(is_dataclass_instance) +11576/11516 0.001 0.000 0.003 0.000 :121(__subclasscheck__) + 5186 0.001 0.000 0.003 0.000 dataclasses.py:1256(is_dataclass) +11576/11516 0.002 0.000 0.002 0.000 {built-in method _abc._abc_subclasscheck} + 6979 0.001 0.000 0.002 0.000 :117(__instancecheck__) + 5512 0.001 0.000 0.001 0.000 apply_func.py:11(is_namedtuple) + 5186 0.001 0.000 0.001 0.000 {built-in method builtins.hasattr} + 6979 0.001 0.000 0.001 0.000 {built-in method _abc._abc_instancecheck} + 5186 0.000 0.000 0.000 0.000 :315(__subclasshook__) + 6490 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects} + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 {built-in method builtins.all} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 326 0.000 0.000 0.000 0.000 apply_func.py:65() + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 489 0.000 0.000 0.000 0.000 {method 'items' of 'collections.OrderedDict' objects} + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 62 0.000 0.000 0.000 0.000 :409(__subclasshook__) + 3 0.000 0.000 0.000 0.000 apply_func.py:63(__subclasshook__) + 3 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 3 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + + + +Profile stats for: [LightningModule]TimeNet.on_after_batch_transfer + 1141 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 hooks.py:641(on_after_batch_transfer) + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]_LRCallback.on_train_batch_start + 3220 function calls in 0.002 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.002 0.000 lr_finder.py:383(on_train_batch_start) + 1 0.000 0.000 0.001 0.001 std.py:952(__init__) + 5 0.000 0.000 0.001 0.000 iostream.py:592(flush) + 6 0.000 0.000 0.001 0.000 threading.py:604(wait) + 6 0.000 0.000 0.001 0.000 threading.py:288(wait) + 42 0.001 0.000 0.001 0.000 {method 'acquire' of '_thread.lock' objects} + 1 0.000 0.000 0.001 0.001 std.py:1325(refresh) + 1 0.000 0.000 0.001 0.001 std.py:1464(display) + 6 0.000 0.000 0.001 0.000 utils.py:194(inner) + 2 0.000 0.000 0.000 0.000 std.py:1441(moveto) + 1 0.000 0.000 0.000 0.000 std.py:438(status_printer) + 1 0.000 0.000 0.000 0.000 std.py:457(print_status) + 1 0.000 0.000 0.000 0.000 std.py:451(fp_write) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 std.py:663(__new__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 13 0.000 0.000 0.000 0.000 iostream.py:259(schedule) + 1 0.000 0.000 0.000 0.000 _monitor.py:30(__init__) + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 13 0.000 0.000 0.000 0.000 socket.py:626(send) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 fit_loop.py:106(batch_idx) + 1 0.000 0.000 0.000 0.000 threading.py:938(start) + 1 0.000 0.000 0.000 0.000 std.py:1150(__str__) + 163 0.000 0.000 0.000 0.000 trainer.py:1191(lr_scheduler_configs) + 1 0.000 0.000 0.000 0.000 std.py:464(format_meter) + 3 0.000 0.000 0.000 0.000 iostream.py:655(write) + 163 0.000 0.000 0.000 0.000 training_epoch_loop.py:92(batch_idx) + 326 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 utils.py:333(_screen_shape_linux) + 7 0.000 0.000 0.000 0.000 threading.py:555(__init__) + 163 0.000 0.000 0.000 0.000 lr_finder.py:511(lr) + 1 0.000 0.000 0.000 0.000 utils.py:378(disp_len) + 1 0.000 0.000 0.000 0.000 {built-in method _thread.start_new_thread} + 1 0.000 0.000 0.000 0.000 ipkernel.py:768(init_closure) + 18 0.000 0.000 0.000 0.000 threading.py:1185(is_alive) + 1 0.000 0.000 0.000 0.000 utils.py:374(_text_width) + 1 0.000 0.000 0.000 0.000 threading.py:849(__init__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.sum} + 1 0.000 0.000 0.000 0.000 std.py:679(_get_free_pos) + 163 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects} + 3 0.000 0.000 0.000 0.000 iostream.py:577(_schedule_flush) + 7 0.000 0.000 0.000 0.000 threading.py:236(__init__) + 65 0.000 0.000 0.000 0.000 utils.py:375() + 1 0.000 0.000 0.000 0.000 std.py:682() + 3 0.000 0.000 0.000 0.000 std.py:102(acquire) + 1 0.000 0.000 0.000 0.000 {built-in method fcntl.ioctl} + 163 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 165 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 std.py:760(get_lock) + 3 0.000 0.000 0.000 0.000 _weakrefset.py:63(__iter__) + 2 0.000 0.000 0.000 0.000 std.py:110(__enter__) + 2 0.000 0.000 0.000 0.000 {method 'format' of 'str' objects} + 1 0.000 0.000 0.000 0.000 utils.py:213(__init__) + 18 0.000 0.000 0.000 0.000 threading.py:1118(_wait_for_tstate_lock) + 2 0.000 0.000 0.000 0.000 utils.py:273(_is_ascii) + 3 0.000 0.000 0.000 0.000 std.py:106(release) + 3 0.000 0.000 0.000 0.000 {method 'acquire' of '_multiprocessing.SemLock' objects} + 1 0.000 0.000 0.000 0.000 std.py:90(__init__) + 1 0.000 0.000 0.000 0.000 std.py:1446(format_dict) + 1 0.000 0.000 0.000 0.000 _weakrefset.py:27(__exit__) + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 std.py:400(format_interval) + 2 0.000 0.000 0.000 0.000 std.py:113(__exit__) + 1 0.000 0.000 0.000 0.000 utils.py:347() + 64 0.000 0.000 0.000 0.000 {built-in method unicodedata.east_asian_width} + 2 0.000 0.000 0.000 0.000 _weakrefset.py:85(add) + 1 0.000 0.000 0.000 0.000 :674(__getitem__) + 6 0.000 0.000 0.000 0.000 threading.py:276(_acquire_restore) + 6 0.000 0.000 0.000 0.000 threading.py:1446(current_thread) + 1 0.000 0.000 0.000 0.000 utils.py:266(_supports_unicode) + 1 0.000 0.000 0.000 0.000 std.py:153(__init__) + 6 0.000 0.000 0.000 0.000 threading.py:264(__enter__) + 13 0.000 0.000 0.000 0.000 iostream.py:138(_event_pipe) + 6 0.000 0.000 0.000 0.000 threading.py:267(__exit__) + 13 0.000 0.000 0.000 0.000 {built-in method _thread.allocate_lock} + 11 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 1 0.000 0.000 0.000 0.000 std.py:186(__format__) + 7 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 6 0.000 0.000 0.000 0.000 threading.py:279(_is_owned) + 3 0.000 0.000 0.000 0.000 {method 'release' of '_multiprocessing.SemLock' objects} + 3 0.000 0.000 0.000 0.000 iostream.py:550(_is_master_process) + 1 0.000 0.000 0.000 0.000 functools.py:393(__get__) + 3 0.000 0.000 0.000 0.000 iostream.py:505(parent_header) + 6 0.000 0.000 0.000 0.000 threading.py:273(_release_save) + 3 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects} + 1 0.000 0.000 0.000 0.000 :756(encode) + 20 0.000 0.000 0.000 0.000 threading.py:568(is_set) + 2 0.000 0.000 0.000 0.000 utils.py:187(disable_on_exception) + 1 0.000 0.000 0.000 0.000 _weakrefset.py:53(_commit_removals) + 1 0.000 0.000 0.000 0.000 utils.py:156(__init__) + 1 0.000 0.000 0.000 0.000 threading.py:804(_newname) + 19 0.000 0.000 0.000 0.000 {method 'append' of 'collections.deque' objects} + 21 0.000 0.000 0.000 0.000 {built-in method builtins.ord} + 10 0.000 0.000 0.000 0.000 threading.py:1161(ident) + 1 0.000 0.000 0.000 0.000 {method 'sub' of 're.Pattern' objects} + 3 0.000 0.000 0.000 0.000 utils.py:152(wrapper_setattr) + 2 0.000 0.000 0.000 0.000 utils.py:139(__getattr__) + 1 0.000 0.000 0.000 0.000 threading.py:1317(_make_invoke_excepthook) + 1 0.000 0.000 0.000 0.000 iostream.py:364(fileno) + 1 0.000 0.000 0.000 0.000 {built-in method fromtimestamp} + 1 0.000 0.000 0.000 0.000 threading.py:1214(daemon) + 1 0.000 0.000 0.000 0.000 utils.py:252(_is_utf) + 2 0.000 0.000 0.000 0.000 {method 'encode' of 'str' objects} + 6 0.000 0.000 0.000 0.000 {method '__enter__' of '_thread.lock' objects} + 2 0.000 0.000 0.000 0.000 utils.py:222(__eq__) + 3 0.000 0.000 0.000 0.000 {method 'write' of '_io.StringIO' objects} + 4 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.RLock' objects} + 3 0.000 0.000 0.000 0.000 std.py:226(__init__) + 1 0.000 0.000 0.000 0.000 _weakrefset.py:21(__enter__) + 1 0.000 0.000 0.000 0.000 _weakrefset.py:17(__init__) + 2 0.000 0.000 0.000 0.000 utils.py:370(_term_move_up) + 6 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 1 0.000 0.000 0.000 0.000 std.py:116(create_mp_lock) + 1 0.000 0.000 0.000 0.000 std.py:1157(__hash__) + 1 0.000 0.000 0.000 0.000 utils.py:108(__init__) + 3 0.000 0.000 0.000 0.000 {method 'get' of '_contextvars.ContextVar' objects} + 6 0.000 0.000 0.000 0.000 {method 'release' of '_thread.lock' objects} + 3 0.000 0.000 0.000 0.000 {built-in method builtins.divmod} + 5 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 7 0.000 0.000 0.000 0.000 {built-in method _thread.get_ident} + 1 0.000 0.000 0.000 0.000 std.py:231(__call__) + 4 0.000 0.000 0.000 0.000 {method 'release' of '_thread.RLock' objects} + 4 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.RLock' objects} + 2 0.000 0.000 0.000 0.000 {built-in method builtins.abs} + 6 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.lock' objects} + 1 0.000 0.000 0.000 0.000 {method 'difference' of 'set' objects} + 1 0.000 0.000 0.000 0.000 utils.py:282(_screen_shape_wrapper) + 1 0.000 0.000 0.000 0.000 utils.py:112(__format__) + 1 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 3 0.000 0.000 0.000 0.000 {built-in method posix.getpid} + 1 0.000 0.000 0.000 0.000 std.py:98() + 3 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {built-in method builtins.min} + 1 0.000 0.000 0.000 0.000 {built-in method time.time} + 1 0.000 0.000 0.000 0.000 threading.py:1199(daemon) + 1 0.000 0.000 0.000 0.000 {built-in method __new__ of type object at 0x101877ca8} + 1 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 2 0.000 0.000 0.000 0.000 {built-in method _weakref.proxy} + 1 0.000 0.000 0.000 0.000 std.py:167(colour) + 1 0.000 0.000 0.000 0.000 {method 'remove' of 'set' objects} + 1 0.000 0.000 0.000 0.000 {built-in method atexit.register} + 1 0.000 0.000 0.000 0.000 {method 'pop' of 'list' objects} + 1 0.000 0.000 0.000 0.000 {built-in method builtins.id} + 1 0.000 0.000 0.000 0.000 std.py:163(colour) + + + +Profile stats for: [LightningModule]TimeNet.on_train_batch_start + 1141 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 hooks.py:68(on_train_batch_start) + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Strategy]SingleDeviceStrategy.on_train_batch_start + 1141 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 strategy.py:577(on_train_batch_start) + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: run_training_batch + 6194 function calls (6031 primitive calls) in 1.058 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 1.057 0.006 manual.py:91(run) + 163 0.000 0.000 1.057 0.006 manual.py:104(advance) + 163 0.000 0.000 1.057 0.006 call.py:294(_call_strategy_hook) + 163 0.000 0.000 1.056 0.006 contextlib.py:132(__enter__) + 163 0.000 0.000 1.056 0.006 {built-in method builtins.next} + 163 0.000 0.000 1.056 0.006 profiler.py:55(profile) + 163 0.000 0.000 1.056 0.006 advanced.py:65(start) + 163 1.056 0.006 1.056 0.006 {method 'enable' of '_lsprof.Profiler' objects} + 163 0.000 0.000 0.000 0.000 module.py:1711(__setattr__) + 163 0.000 0.000 0.000 0.000 manual.py:98(on_run_start) + 489/326 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 163 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 326 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 163 0.000 0.000 0.000 0.000 parameter.py:8(__instancecheck__) + 163 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 163 0.000 0.000 0.000 0.000 __init__.py:1467(debug) + 815 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 326 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 163 0.000 0.000 0.000 0.000 __init__.py:1734(isEnabledFor) + 489 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 contextlib.py:428(__init__) + 326 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 163 0.000 0.000 0.000 0.000 module.py:295(automatic_optimization) + 163 0.000 0.000 0.000 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 163 0.000 0.000 0.000 0.000 {method 'values' of 'collections.OrderedDict' objects} + 163 0.000 0.000 0.000 0.000 contextlib.py:431(__enter__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + + + +Profile stats for: [Strategy]SingleDeviceStrategy.training_step + 55583 function calls (55257 primitive calls) in 1.054 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 1.054 0.006 strategy.py:379(training_step) + 163 0.001 0.000 1.053 0.006 time_net.py:776(training_step) + 163 0.000 0.000 0.545 0.003 module.py:1058(manual_backward) + 163 0.000 0.000 0.545 0.003 strategy.py:191(backward) + 163 0.000 0.000 0.544 0.003 precision.py:45(pre_backward) + 163 0.000 0.000 0.544 0.003 call.py:185(_call_callback_hooks) + 326 0.000 0.000 0.543 0.002 contextlib.py:132(__enter__) + 326 0.000 0.000 0.543 0.002 {built-in method builtins.next} + 163 0.000 0.000 0.543 0.003 profiler.py:55(profile) + 163 0.000 0.000 0.543 0.003 advanced.py:65(start) + 163 0.543 0.003 0.543 0.003 {method 'enable' of '_lsprof.Profiler' objects} + 163 0.006 0.000 0.285 0.002 time_net.py:760(loss_func) + 163 0.021 0.000 0.202 0.001 time_net.py:513(forward) + 489 0.000 0.000 0.188 0.000 module.py:1528(_wrapped_call_impl) + 489 0.001 0.000 0.187 0.000 module.py:1534(_call_impl) + 163 0.019 0.000 0.135 0.001 piecewise_linear.py:53(forward) + 163 0.109 0.001 0.109 0.001 {method 'mean' of 'torch._C.TensorBase' objects} + 163 0.084 0.001 0.084 0.001 {built-in method torch.tensor} + 163 0.049 0.000 0.069 0.000 time_net.py:877(_get_time_based_sample_weight) + 163 0.023 0.000 0.042 0.000 piecewise_linear.py:230(compute_m_t) + 163 0.008 0.000 0.041 0.000 fourier.py:66(forward) + 326 0.017 0.000 0.033 0.000 fourier.py:114(compute_fourier) + 652 0.031 0.000 0.031 0.000 {built-in method torch.sum} + 163 0.023 0.000 0.023 0.000 piecewise_linear.py:263(compute_trend) + 163 0.022 0.000 0.022 0.000 {built-in method torch._C._nn.one_hot} + 163 0.009 0.000 0.019 0.000 piecewise_linear.py:206(compute_k_t) + 163 0.001 0.000 0.019 0.000 _compile.py:20(inner) + 326 0.017 0.000 0.017 0.000 {method 'sum' of 'torch._C.TensorBase' objects} + 163 0.000 0.000 0.013 0.000 decorators.py:36(disable) + 163 0.001 0.000 0.012 0.000 eval_frame.py:351(__call__) + 163 0.010 0.000 0.010 0.000 {built-in method torch.cat} + 163 0.000 0.000 0.010 0.000 loss.py:938(forward) + 163 0.000 0.000 0.009 0.000 functional.py:3229(smooth_l1_loss) + 163 0.008 0.000 0.008 0.000 {built-in method torch._C._nn.smooth_l1_loss} + 163 0.008 0.000 0.008 0.000 {built-in method torch.clamp} + 163 0.006 0.000 0.006 0.000 {built-in method torch.ones_like} + 163 0.006 0.000 0.006 0.000 {built-in method torch.cos} + 163 0.001 0.000 0.006 0.000 inspect.py:936(getsourcefile) + 163 0.000 0.000 0.005 0.000 eval_frame.py:428(_fn) + 163 0.002 0.000 0.004 0.000 optimizer.py:793(zero_grad) + 163 0.000 0.000 0.004 0.000 :16(exists) + 163 0.000 0.000 0.004 0.000 trace_rules.py:3377(check) + 163 0.004 0.000 0.004 0.000 {built-in method posix.stat} + 163 0.001 0.000 0.003 0.000 trace_rules.py:3342(check_verbose) + 652 0.003 0.000 0.003 0.000 {built-in method torch.zeros} + 2119 0.002 0.000 0.002 0.000 {method 'unsqueeze' of 'torch._C.TensorBase' objects} + 163 0.000 0.000 0.002 0.000 trace_rules.py:3432(lookup_inner) + 163 0.000 0.000 0.002 0.000 profiler.py:604(__enter__) + 326 0.000 0.000 0.002 0.000 package_importer.py:694(_patched_getfile) + 163 0.000 0.000 0.001 0.000 _ops.py:846(__call__) + 163 0.001 0.000 0.001 0.000 {built-in method torch._ops.profiler._record_function_enter_new} +5868/5542 0.001 0.000 0.001 0.000 {built-in method builtins.isinstance} + 815 0.001 0.000 0.001 0.000 {method 'permute' of 'torch._C.TensorBase' objects} + 326 0.001 0.000 0.001 0.000 inspect.py:896(getfile) + 326 0.001 0.000 0.001 0.000 module.py:1711(__setattr__) + 489 0.000 0.000 0.001 0.000 {built-in method builtins.any} + 2282 0.001 0.000 0.001 0.000 module.py:1696(__getattr__) + 163 0.000 0.000 0.001 0.000 eval_frame.py:550(__init__) + 163 0.000 0.000 0.001 0.000 trace_rules.py:3275(check_file) + 163 0.000 0.000 0.001 0.000 functional.py:47(broadcast_tensors) + 163 0.000 0.000 0.001 0.000 profiler.py:610(__exit__) + 163 0.000 0.000 0.001 0.000 eval_frame.py:290(__init__) + 163 0.000 0.000 0.001 0.000 utils.py:862(getfile) + 3260 0.001 0.000 0.001 0.000 {built-in method builtins.getattr} + 326 0.000 0.000 0.001 0.000 container.py:734(__getitem__) + 163 0.000 0.000 0.001 0.000 module.py:164(optimizers) + 163 0.000 0.000 0.001 0.000 functools.py:35(update_wrapper) + 163 0.000 0.000 0.000 0.000 eval_frame.py:448() + 1141 0.000 0.000 0.000 0.000 trace_rules.py:3279() + 489 0.000 0.000 0.000 0.000 base.py:127(__instancecheck__) + 163 0.000 0.000 0.000 0.000 eval_frame.py:141(change) + 652 0.000 0.000 0.000 0.000 device_dtype_mixin.py:39(device) + 326 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 326 0.000 0.000 0.000 0.000 parameter.py:8(__instancecheck__) + 163 0.000 0.000 0.000 0.000 _ops.py:591(__call__) + 489 0.000 0.000 0.000 0.000 inspect.py:943() + 326 0.000 0.000 0.000 0.000 {method 'detach' of 'torch._C.TensorBase' objects} + 163 0.000 0.000 0.000 0.000 precision.py:167(train_step_context) + 163 0.000 0.000 0.000 0.000 trace_rules.py:2840(is_aten_op_or_tensor_method) + 163 0.000 0.000 0.000 0.000 profiler.py:593(__init__) + 815 0.000 0.000 0.000 0.000 optimizer.py:169(__getattr__) + 163 0.000 0.000 0.000 0.000 {built-in method torch._ops.profiler.} + 489 0.000 0.000 0.000 0.000 eval_frame.py:265(innermost_fn) + 163 0.000 0.000 0.000 0.000 {built-in method torch.broadcast_tensors} + 326 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 815 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 815 0.000 0.000 0.000 0.000 {method 'endswith' of 'str' objects} + 652 0.000 0.000 0.000 0.000 inspect.py:946() + 163 0.000 0.000 0.000 0.000 {built-in method torch.unsqueeze} + 489 0.000 0.000 0.000 0.000 {built-in method torch._C._get_tracing_state} + 1467 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 eval_frame.py:119(backend_cache_manager) + 652 0.000 0.000 0.000 0.000 inspect.py:292(isclass) + 163 0.000 0.000 0.000 0.000 precision.py:68(forward_context) + 489 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 326 0.000 0.000 0.000 0.000 inspect.py:456(istraceback) + 326 0.000 0.000 0.000 0.000 container.py:725(_key_to_attr) + 978 0.000 0.000 0.000 0.000 {method 'startswith' of 'str' objects} + 489 0.000 0.000 0.000 0.000 module.py:215(trainer) + 163 0.000 0.000 0.000 0.000 functools.py:65(wraps) + 326 0.000 0.000 0.000 0.000 inspect.py:283(ismodule) + 163 0.000 0.000 0.000 0.000 _VF.py:26(__getattr__) + 163 0.000 0.000 0.000 0.000 __init__.py:1467(debug) + 978 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 163 0.000 0.000 0.000 0.000 utils.py:435(hashable) + 1304 0.000 0.000 0.000 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 326 0.000 0.000 0.000 0.000 inspect.py:466(isframe) + 326 0.000 0.000 0.000 0.000 inspect.py:300(ismethod) + 163 0.000 0.000 0.000 0.000 module.py:1361(_verify_is_manual_optimization) + 163 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 326 0.000 0.000 0.000 0.000 inspect.py:378(isfunction) + 163 0.000 0.000 0.000 0.000 :2(__init__) + 163 0.000 0.000 0.000 0.000 time_net.py:390(_compute_quantile_forecasts_from_diffs) + 326 0.000 0.000 0.000 0.000 inspect.py:480(iscode) + 978 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 163 0.000 0.000 0.000 0.000 typing.py:349(inner) + 326 0.000 0.000 0.000 0.000 strategy.py:93(precision_plugin) + 326 0.000 0.000 0.000 0.000 {method 'size' of 'torch._C.TensorBase' objects} + 815 0.000 0.000 0.000 0.000 {built-in method builtins.setattr} + 326 0.000 0.000 0.000 0.000 {built-in method torch._C._dynamo.eval_frame.set_eval_frame} + 326 0.000 0.000 0.000 0.000 strategy.py:351(model) + 652 0.000 0.000 0.000 0.000 {method 'keys' of 'collections.OrderedDict' objects} + 652 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 163 0.000 0.000 0.000 0.000 __init__.py:1734(isEnabledFor) + 163 0.000 0.000 0.000 0.000 eval_frame.py:149(revert) + 163 0.000 0.000 0.000 0.000 _reduction.py:7(get_enum) + 163 0.000 0.000 0.000 0.000 callback.py:32(state_key) + 163 0.000 0.000 0.000 0.000 contextlib.py:751(__init__) + 163 0.000 0.000 0.000 0.000 {method 'setdefault' of 'dict' objects} + 326 0.000 0.000 0.000 0.000 eval_frame.py:261(always_false) + 163 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 {built-in method torch._C._has_torch_function_variadic} + 163 0.000 0.000 0.000 0.000 {built-in method torch._C._has_torch_function} + 163 0.000 0.000 0.000 0.000 module.py:295(automatic_optimization) + 163 0.000 0.000 0.000 0.000 {method '__exit__' of 'torch._C.DisableTorchFunctionSubclass' objects} + 163 0.000 0.000 0.000 0.000 strategy.py:345(pre_backward) + 163 0.000 0.000 0.000 0.000 eval_frame.py:257(nothing) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.id} + 163 0.000 0.000 0.000 0.000 {built-in method builtins.hash} + 163 0.000 0.000 0.000 0.000 __init__.py:127(annotate) + 163 0.000 0.000 0.000 0.000 contextlib.py:754(__enter__) + 163 0.000 0.000 0.000 0.000 _jit_internal.py:1120(is_scripting) + 163 0.000 0.000 0.000 0.000 {method 'items' of 'collections.OrderedDict' objects} + + + +Profile stats for: [Callback]_LRCallback.on_before_backward + 1630 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 163 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 163 0.000 0.000 0.000 0.000 callback.py:274(on_before_backward) + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_before_backward + 1141 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 hooks.py:280(on_before_backward) + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]_LRCallback.on_after_backward + 1630 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 163 0.000 0.000 0.000 0.000 callback.py:277(on_after_backward) + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_after_backward + 1141 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 hooks.py:289(on_after_backward) + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: optimizer_step + 10269 function calls (10106 primitive calls) in 0.162 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.162 0.001 strategy.py:219(optimizer_step) + 163 0.000 0.000 0.162 0.001 precision.py:112(optimizer_step) + 163 0.000 0.000 0.161 0.001 lr_scheduler.py:70(wrapper) + 163 0.001 0.000 0.161 0.001 optimizer.py:374(wrapper) + 163 0.000 0.000 0.159 0.001 optimizer.py:58(_use_grad) + 163 0.000 0.000 0.159 0.001 adamw.py:152(step) + 163 0.000 0.000 0.158 0.001 precision.py:95(_wrap_closure) + 163 0.000 0.000 0.158 0.001 precision.py:83(_after_closure) + 163 0.000 0.000 0.158 0.001 call.py:185(_call_callback_hooks) + 163 0.000 0.000 0.157 0.001 contextlib.py:132(__enter__) + 163 0.000 0.000 0.156 0.001 {built-in method builtins.next} + 163 0.000 0.000 0.156 0.001 profiler.py:55(profile) + 163 0.000 0.000 0.156 0.001 advanced.py:65(start) + 163 0.156 0.001 0.156 0.001 {method 'enable' of '_lsprof.Profiler' objects} + 163 0.000 0.000 0.001 0.000 profiler.py:604(__enter__) + 163 0.000 0.000 0.001 0.000 _ops.py:846(__call__) + 163 0.001 0.000 0.001 0.000 {built-in method torch._ops.profiler._record_function_enter_new} + 163 0.000 0.000 0.000 0.000 optimizer.py:327(_cuda_graph_capture_health_check) + 163 0.000 0.000 0.000 0.000 module.py:1711(__setattr__) + 163 0.000 0.000 0.000 0.000 profiler.py:593(__init__) + 652/489 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 163 0.000 0.000 0.000 0.000 _utils.py:851(is_compiling) + 163 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 163 0.000 0.000 0.000 0.000 grad_mode.py:183(__init__) + 163 0.000 0.000 0.000 0.000 grad_mode.py:134(__enter__) + 163 0.000 0.000 0.000 0.000 parameter.py:8(__instancecheck__) + 163 0.000 0.000 0.000 0.000 _contextlib.py:149(__new__) + 163 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 163 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 163 0.000 0.000 0.000 0.000 __init__.py:157(is_compiling) + 163 0.000 0.000 0.000 0.000 __init__.py:1467(debug) + 326 0.000 0.000 0.000 0.000 {built-in method torch._C._set_grad_enabled} + 163 0.000 0.000 0.000 0.000 typing.py:349(inner) + 489 0.000 0.000 0.000 0.000 {built-in method torch.is_grad_enabled} + 163 0.000 0.000 0.000 0.000 module.py:215(trainer) + 163 0.000 0.000 0.000 0.000 __init__.py:33(is_built) + 163 0.000 0.000 0.000 0.000 __init__.py:1734(isEnabledFor) + 326 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 163 0.000 0.000 0.000 0.000 {built-in method __new__ of type object at 0x101877ca8} + 489 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 326 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 326 0.000 0.000 0.000 0.000 {method 'values' of 'collections.OrderedDict' objects} + 163 0.000 0.000 0.000 0.000 callback.py:32(state_key) + 163 0.000 0.000 0.000 0.000 strategy.py:93(precision_plugin) + 163 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 163 0.000 0.000 0.000 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 163 0.000 0.000 0.000 0.000 decorators.py:148(graph_break) + 163 0.000 0.000 0.000 0.000 _jit_internal.py:1120(is_scripting) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 163 0.000 0.000 0.000 0.000 optimizer.py:34(do_nothing_closure) + 163 0.000 0.000 0.000 0.000 __init__.py:127(annotate) + 163 0.000 0.000 0.000 0.000 typing.py:2246(cast) + + + +Profile stats for: [Callback]_LRCallback.on_before_optimizer_step + 1630 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 163 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 163 0.000 0.000 0.000 0.000 callback.py:280(on_before_optimizer_step) + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_before_optimizer_step + 1141 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 hooks.py:298(on_before_optimizer_step) + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]_LRCallback.on_train_batch_end + 9182 function calls in 0.092 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.001 0.000 0.091 0.001 lr_finder.py:396(on_train_batch_end) + 163 0.081 0.000 0.081 0.000 {method 'item' of 'torch._C.TensorBase' objects} + 163 0.000 0.000 0.009 0.000 std.py:1198(update) + 12 0.000 0.000 0.008 0.001 std.py:1325(refresh) + 12 0.000 0.000 0.008 0.001 std.py:1464(display) + 72 0.000 0.000 0.007 0.000 utils.py:194(inner) + 36 0.000 0.000 0.006 0.000 iostream.py:592(flush) + 36 0.000 0.000 0.006 0.000 threading.py:604(wait) + 36 0.000 0.000 0.006 0.000 threading.py:288(wait) + 288 0.005 0.000 0.005 0.000 {method 'acquire' of '_thread.lock' objects} + 24 0.000 0.000 0.005 0.000 std.py:1441(moveto) + 12 0.000 0.000 0.002 0.000 std.py:457(print_status) + 12 0.000 0.000 0.002 0.000 std.py:451(fp_write) + 108 0.000 0.000 0.001 0.000 iostream.py:259(schedule) + 36 0.000 0.000 0.001 0.000 iostream.py:655(write) + 36 0.000 0.000 0.001 0.000 iostream.py:577(_schedule_flush) + 108 0.001 0.000 0.001 0.000 socket.py:626(send) + 12 0.000 0.000 0.001 0.000 std.py:1150(__str__) + 12 0.000 0.000 0.000 0.000 std.py:464(format_meter) + 163 0.000 0.000 0.000 0.000 trainer.py:1458(global_step) + 163 0.000 0.000 0.000 0.000 training_epoch_loop.py:99(global_step) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 12 0.000 0.000 0.000 0.000 utils.py:378(disp_len) + 326 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 12 0.000 0.000 0.000 0.000 utils.py:374(_text_width) + 12 0.000 0.000 0.000 0.000 {built-in method builtins.sum} + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 144 0.000 0.000 0.000 0.000 threading.py:1185(is_alive) + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 898 0.000 0.000 0.000 0.000 utils.py:375() + 36 0.000 0.000 0.000 0.000 threading.py:555(__init__) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 36 0.000 0.000 0.000 0.000 threading.py:236(__init__) + 163 0.000 0.000 0.000 0.000 fit_loop.py:106(batch_idx) + 144 0.000 0.000 0.000 0.000 threading.py:1118(_wait_for_tstate_lock) + 12 0.000 0.000 0.000 0.000 std.py:102(acquire) + 12 0.000 0.000 0.000 0.000 std.py:1446(format_dict) + 24 0.000 0.000 0.000 0.000 std.py:400(format_interval) + 24 0.000 0.000 0.000 0.000 {method 'format' of 'str' objects} + 326 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 886 0.000 0.000 0.000 0.000 {built-in method unicodedata.east_asian_width} + 489 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 12 0.000 0.000 0.000 0.000 {method 'acquire' of '_multiprocessing.SemLock' objects} + 72 0.000 0.000 0.000 0.000 std.py:231(__call__) + 24 0.000 0.000 0.000 0.000 utils.py:273(_is_ascii) + 163 0.000 0.000 0.000 0.000 std.py:1105(__bool__) + 12 0.000 0.000 0.000 0.000 std.py:106(release) + 163 0.000 0.000 0.000 0.000 training_epoch_loop.py:92(batch_idx) + 223 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 12 0.000 0.000 0.000 0.000 {built-in method now} + 12 0.000 0.000 0.000 0.000 std.py:186(__format__) + 108 0.000 0.000 0.000 0.000 iostream.py:138(_event_pipe) + 36 0.000 0.000 0.000 0.000 threading.py:1446(current_thread) + 144 0.000 0.000 0.000 0.000 threading.py:568(is_set) + 36 0.000 0.000 0.000 0.000 iostream.py:550(_is_master_process) + 36 0.000 0.000 0.000 0.000 iostream.py:505(parent_header) + 72 0.000 0.000 0.000 0.000 {built-in method _thread.allocate_lock} + 163 0.000 0.000 0.000 0.000 module.py:295(automatic_optimization) + 12 0.000 0.000 0.000 0.000 {method 'release' of '_multiprocessing.SemLock' objects} + 163 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects} + 36 0.000 0.000 0.000 0.000 threading.py:276(_acquire_restore) + 12 0.000 0.000 0.000 0.000 {method 'sub' of 're.Pattern' objects} + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 36 0.000 0.000 0.000 0.000 threading.py:267(__exit__) + 71 0.000 0.000 0.000 0.000 {built-in method time.time} + 36 0.000 0.000 0.000 0.000 threading.py:264(__enter__) + 12 0.000 0.000 0.000 0.000 std.py:153(__init__) + 36 0.000 0.000 0.000 0.000 threading.py:279(_is_owned) + 72 0.000 0.000 0.000 0.000 threading.py:1161(ident) + 252 0.000 0.000 0.000 0.000 {built-in method builtins.ord} + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 36 0.000 0.000 0.000 0.000 threading.py:273(_release_save) + 144 0.000 0.000 0.000 0.000 {method 'append' of 'collections.deque' objects} + 163 0.000 0.000 0.000 0.000 single_device.py:90(broadcast) + 24 0.000 0.000 0.000 0.000 utils.py:370(_term_move_up) + 36 0.000 0.000 0.000 0.000 {method 'write' of '_io.StringIO' objects} + 60 0.000 0.000 0.000 0.000 {built-in method builtins.divmod} + 12 0.000 0.000 0.000 0.000 utils.py:108(__init__) + 36 0.000 0.000 0.000 0.000 {method 'get' of '_contextvars.ContextVar' objects} + 36 0.000 0.000 0.000 0.000 {built-in method posix.getpid} + 36 0.000 0.000 0.000 0.000 {built-in method _thread.get_ident} + 36 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.RLock' objects} + 12 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.RLock' objects} + 36 0.000 0.000 0.000 0.000 {method '__enter__' of '_thread.lock' objects} + 48 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 24 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 12 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 24 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 36 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.lock' objects} + 12 0.000 0.000 0.000 0.000 std.py:167(colour) + 36 0.000 0.000 0.000 0.000 {method 'release' of '_thread.lock' objects} + 36 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects} + 12 0.000 0.000 0.000 0.000 utils.py:112(__format__) + 12 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 12 0.000 0.000 0.000 0.000 {built-in method builtins.abs} + 12 0.000 0.000 0.000 0.000 std.py:163(colour) + 12 0.000 0.000 0.000 0.000 {method 'release' of '_thread.RLock' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_batch_end + 1141 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 163 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 163 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 163 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 163 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 163 0.000 0.000 0.000 0.000 hooks.py:79(on_train_batch_end) + 163 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 163 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]_LRCallback.on_train_epoch_end + 40 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 4 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 4 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 4 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 4 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 4 0.000 0.000 0.000 0.000 callback.py:95(on_train_epoch_end) + 4 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 4 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 4 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_epoch_end + 28 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 4 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 4 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 4 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 4 0.000 0.000 0.000 0.000 hooks.py:214(on_train_epoch_end) + 4 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]_LRCallback.on_train_end + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 callback.py:208(on_train_end) + + + +Profile stats for: [LightningModule]TimeNet.on_train_end + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:47(on_train_end) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Strategy]SingleDeviceStrategy.on_train_end + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 strategy.py:561(on_train_end) + + + +Profile stats for: [LightningModule]TimeNet.on_load_checkpoint + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:673(on_load_checkpoint) + + + +Profile stats for: [Callback]LearningRateFinder.on_load_checkpoint + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 callback.py:262(on_load_checkpoint) + + + +Profile stats for: [Callback]ProgressBar.on_load_checkpoint + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 callback.py:262(on_load_checkpoint) + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]LearningRateFinder.teardown + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 callback.py:61(teardown) + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + + + +Profile stats for: [Callback]ProgressBar.teardown + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 callback.py:61(teardown) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.teardown + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:447(teardown) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + +FIT Profiler Report +Profile stats for: [LightningModule]TimeNet.configure_callbacks + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 module.py:936(configure_callbacks) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]ProgressBar.setup + 13 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 progress_bar.py:171(setup) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 trainer.py:1241(is_global_zero) + 2 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 1 0.000 0.000 0.000 0.000 single_device.py:81(is_global_zero) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.setup + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:420(setup) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.configure_optimizers + 1025 function calls (977 primitive calls) in 0.002 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.002 0.002 time_net.py:863(configure_optimizers) + 1 0.000 0.000 0.002 0.002 trainer.py:1653(estimated_stepping_batches) + 1 0.000 0.000 0.002 0.002 fit_loop.py:213(setup_data) + 2 0.001 0.001 0.002 0.001 data.py:92(has_len_all_ranks) + 2 0.000 0.000 0.000 0.000 {built-in method torch.tensor} + 1 0.000 0.000 0.000 0.000 adamw.py:14(__init__) + 1 0.000 0.000 0.000 0.000 optimizer.py:250(__init__) + 1 0.000 0.000 0.000 0.000 _compile.py:20(inner) + 1 0.000 0.000 0.000 0.000 decorators.py:36(disable) + 1 0.000 0.000 0.000 0.000 eval_frame.py:351(__call__) + 1 0.000 0.000 0.000 0.000 data_connector.py:468(_process_dataloader) + 5/1 0.000 0.000 0.000 0.000 {built-in method builtins.iter} + 1 0.000 0.000 0.000 0.000 fetchers.py:102(__iter__) + 1 0.000 0.000 0.000 0.000 fetchers.py:49(__iter__) + 1 0.000 0.000 0.000 0.000 data_connector.py:313(_request_dataloader) + 1 0.000 0.000 0.000 0.000 combined_loader.py:347(__iter__) + 5 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 combined_loader.py:90(__iter__) + 4 0.000 0.000 0.000 0.000 data.py:357(_replace_dunder_methods) + 1 0.000 0.000 0.000 0.000 combined_loader.py:41(__iter__) + 1 0.000 0.000 0.000 0.000 combined_loader.py:43() + 1 0.000 0.000 0.000 0.000 dataloader.py:426(__iter__) + 1 0.000 0.000 0.000 0.000 dataloader.py:382(_get_iterator) + 1 0.000 0.000 0.000 0.000 utilities.py:135(_select_data_fetcher) + 1 0.000 0.000 0.000 0.000 dataloader.py:659(__init__) + 2 0.000 0.000 0.000 0.000 contextlib.py:132(__enter__) + 1 0.000 0.000 0.000 0.000 data_connector.py:407(_worker_check) + 6 0.000 0.000 0.000 0.000 module.py:2207(parameters) + 6 0.000 0.000 0.000 0.000 module.py:2232(named_parameters) + 1 0.000 0.000 0.000 0.000 signature_utils.py:18(is_param_in_hook_signature) + 1 0.000 0.000 0.000 0.000 dataloader.py:565(__init__) + 6 0.000 0.000 0.000 0.000 module.py:2193(_named_members) + 1 0.000 0.000 0.000 0.000 inspect.py:1336(getfullargspec) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:1638(__init__) + 1 0.000 0.000 0.000 0.000 inspect.py:936(getsourcefile) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3377(check) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3342(check_verbose) + 95 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 2/1 0.000 0.000 0.000 0.000 inspect.py:2428(_signature_from_callable) + 28/9 0.000 0.000 0.000 0.000 module.py:2369(named_modules) + 43/22 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:35(__init__) + 1 0.000 0.000 0.000 0.000 inspect.py:2333(_signature_from_function) + 1 0.000 0.000 0.000 0.000 eval_frame.py:428(_fn) + 8 0.000 0.000 0.000 0.000 functools.py:35(update_wrapper) + 3 0.000 0.000 0.000 0.000 rank_zero.py:36(wrapped_fn) + 7/4 0.000 0.000 0.000 0.000 data.py:47(sized_len) + 1 0.000 0.000 0.000 0.000 data_connector.py:175(_prepare_dataloader) + 1 0.000 0.000 0.000 0.000 :16(exists) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3432(lookup_inner) + 1 0.000 0.000 0.000 0.000 {built-in method posix.stat} + 1 0.000 0.000 0.000 0.000 data_connector.py:167(_requires_distributed_sampler) + 1 0.000 0.000 0.000 0.000 context.py:253(get_start_method) + 11 0.000 0.000 0.000 0.000 :117(__instancecheck__) + 6 0.000 0.000 0.000 0.000 metric.py:944(__hash__) + 3 0.000 0.000 0.000 0.000 combined_loader.py:355(__len__) + 1 0.000 0.000 0.000 0.000 accelerator_connector.py:609(is_distributed) + 4 0.000 0.000 0.000 0.000 data.py:330(_wrap_attr_method) + 3 0.000 0.000 0.000 0.000 combined_loader.py:96(__len__) + 96 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 1 0.000 0.000 0.000 0.000 optimizer.py:863(add_param_group) + 11 0.000 0.000 0.000 0.000 {built-in method _abc._abc_instancecheck} + 1 0.000 0.000 0.000 0.000 data.py:438(suggested_max_num_workers) + 1 0.000 0.000 0.000 0.000 combined_loader.py:284(__init__) + 3 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 5 0.000 0.000 0.000 0.000 dataloader.py:457(__len__) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:87(_initial_step) + 2 0.000 0.000 0.000 0.000 package_importer.py:694(_patched_getfile) + 1 0.000 0.000 0.000 0.000 data.py:453(_num_cpus_available) + 1 0.000 0.000 0.000 0.000 _pytree.py:18(_tree_flatten) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:131(step) + 5 0.000 0.000 0.000 0.000 enums.py:81(__eq__) + 1 0.000 0.000 0.000 0.000 {method 'random_' of 'torch._C.TensorBase' objects} + 3 0.000 0.000 0.000 0.000 inspect.py:2686(__init__) + 2 0.000 0.000 0.000 0.000 rank_zero.py:76(rank_zero_warn) + 1 0.000 0.000 0.000 0.000 fetchers.py:139(reset) + 3 0.000 0.000 0.000 0.000 combined_loader.py:404(_get_iterables_lengths) + 1 0.000 0.000 0.000 0.000 fetchers.py:71(reset) + 1 0.000 0.000 0.000 0.000 dataloader.py:93(_get_distributed_settings) + 1 0.000 0.000 0.000 0.000 rank_zero.py:66(rank_zero_info) + 2 0.000 0.000 0.000 0.000 inheritance.py:19(get_all_subclasses) + 2 0.000 0.000 0.000 0.000 inspect.py:896(getfile) + 1 0.000 0.000 0.000 0.000 {built-in method posix.cpu_count} + 48 0.000 0.000 0.000 0.000 {built-in method builtins.setattr} + 3 0.000 0.000 0.000 0.000 combined_loader.py:405() + 2 0.000 0.000 0.000 0.000 rank_zero.py:72(_warn) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:57(with_counter) + 1 0.000 0.000 0.000 0.000 rank_zero.py:60(_info) + 5 0.000 0.000 0.000 0.000 sampler.py:297(__len__) + 3 0.000 0.000 0.000 0.000 {built-in method builtins.any} + 2 0.000 0.000 0.000 0.000 data.py:283(_wrap_init_method) + 1 0.000 0.000 0.000 0.000 trace_rules.py:3275(check_file) + 13 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects} + 26 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 1 0.000 0.000 0.000 0.000 trainer.py:1173(num_devices) + 2 0.000 0.000 0.000 0.000 inheritance.py:8(get_all_subclasses_iterator) + 1 0.000 0.000 0.000 0.000 eval_frame.py:550(__init__) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:1775(get_lr) + 2 0.000 0.000 0.000 0.000 {built-in method _warnings.warn} + 32 0.000 0.000 0.000 0.000 _tensor.py:1059(__hash__) + 1 0.000 0.000 0.000 0.000 dataloader.py:74(create_fetcher) + 1 0.000 0.000 0.000 0.000 model_helpers.py:29(is_overridden) + 1 0.000 0.000 0.000 0.000 imports.py:47(_habana_available_and_importable) + 1 0.000 0.000 0.000 0.000 data.py:245(_auto_add_worker_init_fn) + 1 0.000 0.000 0.000 0.000 states.py:67(dataloader_prefix) + 1 0.000 0.000 0.000 0.000 _pytree.py:6(_is_leaf_or_primitive_container) + 6 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 11 0.000 0.000 0.000 0.000 enum.py:192(__get__) + 5 0.000 0.000 0.000 0.000 sampler.py:170(__len__) + 1 0.000 0.000 0.000 0.000 trainer.py:1156(device_ids) + 1 0.000 0.000 0.000 0.000 eval_frame.py:290(__init__) + 3 0.000 0.000 0.000 0.000 base.py:127(__instancecheck__) + 1 0.000 0.000 0.000 0.000 trace_rules.py:2840(is_aten_op_or_tensor_method) + 7 0.000 0.000 0.000 0.000 {built-in method builtins.hash} + 1 0.000 0.000 0.000 0.000 {built-in method torch.empty} + 2 0.000 0.000 0.000 0.000 contextlib.py:287(helper) + 1 0.000 0.000 0.000 0.000 distributed_c10d.py:973(is_initialized) + 1 0.000 0.000 0.000 0.000 eval_frame.py:448() + 1 0.000 0.000 0.000 0.000 _pytree.py:761(__init__) + 2 0.000 0.000 0.000 0.000 data.py:43(has_iterable_dataset) + 1 0.000 0.000 0.000 0.000 data_connector.py:439(_parse_num_batches) + 1 0.000 0.000 0.000 0.000 inspect.py:2972(__init__) + 1 0.000 0.000 0.000 0.000 utils.py:862(getfile) + 1 0.000 0.000 0.000 0.000 eval_frame.py:141(change) + 1 0.000 0.000 0.000 0.000 :771(get) + 7 0.000 0.000 0.000 0.000 trace_rules.py:3279() + 1 0.000 0.000 0.000 0.000 {built-in method torch._C._log_api_usage_once} + 1 0.000 0.000 0.000 0.000 combined_loader.py:313(flattened) + 1 0.000 0.000 0.000 0.000 _pytree.py:601(_get_node_type) + 5 0.000 0.000 0.000 0.000 sampler.py:145(num_samples) + 1 0.000 0.000 0.000 0.000 platform.py:1119(python_version) + 2 0.000 0.000 0.000 0.000 lr_scheduler.py:1764(_annealing_cos) + 8 0.000 0.000 0.000 0.000 functools.py:65(wraps) + 2 0.000 0.000 0.000 0.000 contextlib.py:104(__init__) + 1 0.000 0.000 0.000 0.000 :674(__getitem__) + 8 0.000 0.000 0.000 0.000 module.py:2260() + 3 0.000 0.000 0.000 0.000 lr_scheduler.py:1755(_format_param) + 1 0.000 0.000 0.000 0.000 fetchers.py:95(__init__) + 6 0.000 0.000 0.000 0.000 combined_loader.py:100() + 1 0.000 0.000 0.000 0.000 distributed_c10d.py:588(WORLD) + 1 0.000 0.000 0.000 0.000 overrides.py:10(is_overridden) + 1 0.000 0.000 0.000 0.000 optimizer.py:417(_patch_step_function) + 1 0.000 0.000 0.000 0.000 _pytree.py:811(tree_unflatten) + 6 0.000 0.000 0.000 0.000 dataloader.py:445(_index_sampler) + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 __init__.py:1479(info) + 3 0.000 0.000 0.000 0.000 inspect.py:943() + 2 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 combined_loader.py:68(__init__) + 9 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 11 0.000 0.000 0.000 0.000 enum.py:1243(value) + 3 0.000 0.000 0.000 0.000 enum.py:685(__call__) + 2 0.000 0.000 0.000 0.000 inheritance.py:11(recurse) + 3 0.000 0.000 0.000 0.000 eval_frame.py:265(innermost_fn) + 1 0.000 0.000 0.000 0.000 :1() + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 39 0.000 0.000 0.000 0.000 {built-in method builtins.id} + 2 0.000 0.000 0.000 0.000 typing.py:349(inner) + 1 0.000 0.000 0.000 0.000 combined_loader.py:329(limits) + 2 0.000 0.000 0.000 0.000 __init__.py:1734(isEnabledFor) + 1 0.000 0.000 0.000 0.000 imports.py:196(__bool__) + 1 0.000 0.000 0.000 0.000 _pytree.py:590(_is_namedtuple_instance) + 1 0.000 0.000 0.000 0.000 inspect.py:167(get_annotations) + 1 0.000 0.000 0.000 0.000 fit_loop.py:434(_load_combined_loader_states) + 1 0.000 0.000 0.000 0.000 __init__.py:9(is_available) + 12 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 6 0.000 0.000 0.000 0.000 {built-in method builtins.delattr} + 1 0.000 0.000 0.000 0.000 data_connector.py:282(dataloader) + 1 0.000 0.000 0.000 0.000 trainer.py:1480(max_steps) + 1 0.000 0.000 0.000 0.000 platform.py:1002(_sys_version) + 1 0.000 0.000 0.000 0.000 :756(encode) + 1 0.000 0.000 0.000 0.000 _pytree.py:734(unflatten) + 1 0.000 0.000 0.000 0.000 trainer.py:1467(current_epoch) + 4 0.000 0.000 0.000 0.000 inspect.py:3019() + 23 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects} + 5 0.000 0.000 0.000 0.000 time_dataset.py:842(__len__) + 1 0.000 0.000 0.000 0.000 :2(__init__) + 12 0.000 0.000 0.000 0.000 {method 'setdefault' of 'dict' objects} + 4 0.000 0.000 0.000 0.000 inspect.py:946() + 4 0.000 0.000 0.000 0.000 inspect.py:378(isfunction) + 1 0.000 0.000 0.000 0.000 {method 'item' of 'torch._C.TensorBase' objects} + 1 0.000 0.000 0.000 0.000 fetchers.py:29(__init__) + 3 0.000 0.000 0.000 0.000 single_device.py:71(root_device) + 1 0.000 0.000 0.000 0.000 utils.py:435(hashable) + 4 0.000 0.000 0.000 0.000 inspect.py:292(isclass) + 8 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 data_connector.py:375(_check_dataloader_iterable) + 1 0.000 0.000 0.000 0.000 __init__.py:1467(debug) + 1 0.000 0.000 0.000 0.000 eval_frame.py:119(backend_cache_manager) + 2 0.000 0.000 0.000 0.000 inspect.py:300(ismethod) + 2 0.000 0.000 0.000 0.000 inspect.py:283(ismodule) + 1 0.000 0.000 0.000 0.000 combined_loader.py:29(__init__) + 10 0.000 0.000 0.000 0.000 {method 'lower' of 'str' objects} + 7 0.000 0.000 0.000 0.000 dataloader.py:441(_auto_collation) + 5 0.000 0.000 0.000 0.000 {method 'endswith' of 'str' objects} + 16 0.000 0.000 0.000 0.000 {method 'items' of 'collections.OrderedDict' objects} + 2 0.000 0.000 0.000 0.000 inspect.py:456(istraceback) + 2 0.000 0.000 0.000 0.000 {built-in method math.cos} + 1 0.000 0.000 0.000 0.000 module.py:215(trainer) + 6 0.000 0.000 0.000 0.000 {method 'startswith' of 'str' objects} + 6 0.000 0.000 0.000 0.000 inspect.py:2739(name) + 3 0.000 0.000 0.000 0.000 {method 'isidentifier' of 'str' objects} + 2 0.000 0.000 0.000 0.000 inspect.py:480(iscode) + 1 0.000 0.000 0.000 0.000 dataloader.py:389(multiprocessing_context) + 2 0.000 0.000 0.000 0.000 inspect.py:466(isframe) + 1 0.000 0.000 0.000 0.000 imports.py:160(_check_available) + 1 0.000 0.000 0.000 0.000 fetch.py:8(__init__) + 3 0.000 0.000 0.000 0.000 enum.py:1091(__new__) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:178(__init__) + 1 0.000 0.000 0.000 0.000 loop.py:27(restarting) + 3 0.000 0.000 0.000 0.000 {built-in method builtins.min} + 2 0.000 0.000 0.000 0.000 {built-in method torch._C._dynamo.eval_frame.set_eval_frame} + 1 0.000 0.000 0.000 0.000 fit_loop.py:116(max_steps) + 1 0.000 0.000 0.000 0.000 {method 'encode' of 'str' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1133(global_rank) + 1 0.000 0.000 0.000 0.000 inspect.py:3036(return_annotation) + 1 0.000 0.000 0.000 0.000 _pytree.py:764(__post_init__) + 1 0.000 0.000 0.000 0.000 distributed_c10d.py:460(default_pg) + 3 0.000 0.000 0.000 0.000 trainer.py:1472(max_epochs) + 6 0.000 0.000 0.000 0.000 {function VariableTrackerMeta.__instancecheck__ at 0x15226da80} + 1 0.000 0.000 0.000 0.000 {built-in method math.ceil} + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:51() + 4 0.000 0.000 0.000 0.000 combined_loader.py:308(flattened) + 1 0.000 0.000 0.000 0.000 {method 'isdisjoint' of 'set' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1590(loggers) + 3 0.000 0.000 0.000 0.000 inspect.py:2751(kind) + 1 0.000 0.000 0.000 0.000 {built-in method __new__ of type object at 0x101877ca8} + 6 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 3 0.000 0.000 0.000 0.000 inspect.py:2743(default) + 3 0.000 0.000 0.000 0.000 inspect.py:2747(annotation) + 1 0.000 0.000 0.000 0.000 eval_frame.py:149(revert) + 2 0.000 0.000 0.000 0.000 fetchers.py:38(combined_loader) + 1 0.000 0.000 0.000 0.000 fetchers.py:46(setup) + 3 0.000 0.000 0.000 0.000 {method '__contains__' of 'frozenset' objects} + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:181(__enter__) + 1 0.000 0.000 0.000 0.000 _pytree.py:650(is_leaf) + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:167() + 1 0.000 0.000 0.000 0.000 {method 'values' of 'mappingproxy' objects} + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:185(__exit__) + 1 0.000 0.000 0.000 0.000 trainer.py:1523(num_training_batches) + 2 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 2 0.000 0.000 0.000 0.000 single_device.py:50(reduce) + 2 0.000 0.000 0.000 0.000 {method '__subclasses__' of 'type' objects} + 1 0.000 0.000 0.000 0.000 lr_scheduler.py:25(_check_verbose_deprecated_warning) + 1 0.000 0.000 0.000 0.000 trainer.py:1493(train_dataloader) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 2 0.000 0.000 0.000 0.000 eval_frame.py:261(always_false) + 1 0.000 0.000 0.000 0.000 single_device.py:86(barrier) + 1 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 inspect.py:3032(parameters) + 1 0.000 0.000 0.000 0.000 strategy.py:439(process_dataloader) + 1 0.000 0.000 0.000 0.000 typing.py:2246(cast) + 1 0.000 0.000 0.000 0.000 eval_frame.py:257(nothing) + + + +Profile stats for: [Callback]ProgressBar.on_fit_start + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 callback.py:64(on_fit_start) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_fit_start + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 hooks.py:30(on_fit_start) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]ProgressBar.on_train_start + 382 function calls in 0.001 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.001 0.001 tqdm_progress.py:259(on_train_start) + 1 0.000 0.000 0.001 0.001 tqdm_progress.py:197(init_train_tqdm) + 1 0.000 0.000 0.001 0.001 tqdm_progress.py:40(__init__) + 1 0.000 0.000 0.001 0.001 std.py:952(__init__) + 3 0.000 0.000 0.000 0.000 iostream.py:592(flush) + 3 0.000 0.000 0.000 0.000 threading.py:604(wait) + 3 0.000 0.000 0.000 0.000 threading.py:288(wait) + 22 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.lock' objects} + 1 0.000 0.000 0.000 0.000 std.py:438(status_printer) + 1 0.000 0.000 0.000 0.000 std.py:1325(refresh) + 1 0.000 0.000 0.000 0.000 std.py:1464(display) + 1 0.000 0.000 0.000 0.000 std.py:457(print_status) + 1 0.000 0.000 0.000 0.000 std.py:451(fp_write) + 2 0.000 0.000 0.000 0.000 utils.py:194(inner) + 7 0.000 0.000 0.000 0.000 iostream.py:259(schedule) + 1 0.000 0.000 0.000 0.000 std.py:1150(__str__) + 7 0.000 0.000 0.000 0.000 socket.py:626(send) + 2 0.000 0.000 0.000 0.000 utils.py:333(_screen_shape_linux) + 1 0.000 0.000 0.000 0.000 std.py:464(format_meter) + 1 0.000 0.000 0.000 0.000 std.py:663(__new__) + 1 0.000 0.000 0.000 0.000 utils.py:378(disp_len) + 2 0.000 0.000 0.000 0.000 {built-in method fcntl.ioctl} + 1 0.000 0.000 0.000 0.000 utils.py:374(_text_width) + 1 0.000 0.000 0.000 0.000 std.py:1446(format_dict) + 1 0.000 0.000 0.000 0.000 iostream.py:655(write) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.sum} + 3 0.000 0.000 0.000 0.000 std.py:102(acquire) + 2 0.000 0.000 0.000 0.000 std.py:110(__enter__) + 44 0.000 0.000 0.000 0.000 utils.py:375() + 10 0.000 0.000 0.000 0.000 threading.py:1185(is_alive) + 3 0.000 0.000 0.000 0.000 threading.py:555(__init__) + 1 0.000 0.000 0.000 0.000 utils.py:213(__init__) + 3 0.000 0.000 0.000 0.000 {method 'acquire' of '_multiprocessing.SemLock' objects} + 2 0.000 0.000 0.000 0.000 {method 'format' of 'str' objects} + 2 0.000 0.000 0.000 0.000 utils.py:347() + 3 0.000 0.000 0.000 0.000 threading.py:236(__init__) + 3 0.000 0.000 0.000 0.000 std.py:106(release) + 1 0.000 0.000 0.000 0.000 iostream.py:577(_schedule_flush) + 2 0.000 0.000 0.000 0.000 :674(__getitem__) + 10 0.000 0.000 0.000 0.000 threading.py:1118(_wait_for_tstate_lock) + 2 0.000 0.000 0.000 0.000 std.py:113(__exit__) + 43 0.000 0.000 0.000 0.000 {built-in method unicodedata.east_asian_width} + 1 0.000 0.000 0.000 0.000 std.py:400(format_interval) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 2 0.000 0.000 0.000 0.000 utils.py:266(_supports_unicode) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 13 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 1 0.000 0.000 0.000 0.000 functools.py:393(__get__) + 1 0.000 0.000 0.000 0.000 _weakrefset.py:85(add) + 1 0.000 0.000 0.000 0.000 std.py:186(__format__) + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 2 0.000 0.000 0.000 0.000 :756(encode) + 3 0.000 0.000 0.000 0.000 {method 'release' of '_multiprocessing.SemLock' objects} + 7 0.000 0.000 0.000 0.000 iostream.py:138(_event_pipe) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'sub' of 're.Pattern' objects} + 3 0.000 0.000 0.000 0.000 threading.py:1446(current_thread) + 4 0.000 0.000 0.000 0.000 utils.py:222(__eq__) + 1 0.000 0.000 0.000 0.000 {built-in method fromtimestamp} + 5 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 3 0.000 0.000 0.000 0.000 utils.py:139(__getattr__) + 1 0.000 0.000 0.000 0.000 tqdm_progress.py:173(is_disabled) + 3 0.000 0.000 0.000 0.000 threading.py:267(__exit__) + 2 0.000 0.000 0.000 0.000 utils.py:187(disable_on_exception) + 1 0.000 0.000 0.000 0.000 std.py:153(__init__) + 3 0.000 0.000 0.000 0.000 threading.py:264(__enter__) + 3 0.000 0.000 0.000 0.000 utils.py:152(wrapper_setattr) + 6 0.000 0.000 0.000 0.000 {built-in method _thread.allocate_lock} + 3 0.000 0.000 0.000 0.000 threading.py:273(_release_save) + 1 0.000 0.000 0.000 0.000 iostream.py:505(parent_header) + 1 0.000 0.000 0.000 0.000 utils.py:156(__init__) + 1 0.000 0.000 0.000 0.000 utils.py:273(_is_ascii) + 11 0.000 0.000 0.000 0.000 threading.py:568(is_set) + 1 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects} + 1 0.000 0.000 0.000 0.000 iostream.py:550(_is_master_process) + 3 0.000 0.000 0.000 0.000 threading.py:276(_acquire_restore) + 1 0.000 0.000 0.000 0.000 _monitor.py:94(report) + 2 0.000 0.000 0.000 0.000 iostream.py:364(fileno) + 6 0.000 0.000 0.000 0.000 threading.py:1161(ident) + 1 0.000 0.000 0.000 0.000 std.py:760(get_lock) + 1 0.000 0.000 0.000 0.000 tqdm_progress.py:169(is_enabled) + 3 0.000 0.000 0.000 0.000 threading.py:279(_is_owned) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 3 0.000 0.000 0.000 0.000 {method 'encode' of 'str' objects} + 1 0.000 0.000 0.000 0.000 utils.py:252(_is_utf) + 3 0.000 0.000 0.000 0.000 std.py:226(__init__) + 10 0.000 0.000 0.000 0.000 {method 'append' of 'collections.deque' objects} + 1 0.000 0.000 0.000 0.000 std.py:1157(__hash__) + 3 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.RLock' objects} + 1 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 std.py:231(__call__) + 4 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 3 0.000 0.000 0.000 0.000 {method '__enter__' of '_thread.lock' objects} + 1 0.000 0.000 0.000 0.000 utils.py:108(__init__) + 1 0.000 0.000 0.000 0.000 tqdm_progress.py:161(refresh_rate) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 3 0.000 0.000 0.000 0.000 {built-in method builtins.divmod} + 1 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 1 0.000 0.000 0.000 0.000 tqdm_progress.py:127(train_progress_bar) + 1 0.000 0.000 0.000 0.000 tqdm_progress.py:165(process_position) + 1 0.000 0.000 0.000 0.000 {built-in method __new__ of type object at 0x101877ca8} + 1 0.000 0.000 0.000 0.000 {method 'write' of '_io.StringIO' objects} + 1 0.000 0.000 0.000 0.000 std.py:167(colour) + 1 0.000 0.000 0.000 0.000 utils.py:112(__format__) + 3 0.000 0.000 0.000 0.000 {built-in method _thread.get_ident} + 3 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.lock' objects} + 3 0.000 0.000 0.000 0.000 {method 'release' of '_thread.RLock' objects} + 1 0.000 0.000 0.000 0.000 {built-in method builtins.abs} + 2 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 1 0.000 0.000 0.000 0.000 utils.py:282(_screen_shape_wrapper) + 2 0.000 0.000 0.000 0.000 {built-in method _weakref.proxy} + 1 0.000 0.000 0.000 0.000 {built-in method time.time} + 3 0.000 0.000 0.000 0.000 {method 'release' of '_thread.lock' objects} + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {built-in method builtins.id} + 1 0.000 0.000 0.000 0.000 {method 'get' of '_contextvars.ContextVar' objects} + 1 0.000 0.000 0.000 0.000 {built-in method posix.getpid} + 1 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.RLock' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 progress_bar.py:64(train_description) + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 std.py:163(colour) + + + +Profile stats for: [LightningModule]TimeNet.on_train_start + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:44(on_train_start) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Strategy]SingleDeviceStrategy.on_train_start + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 strategy.py:545(on_train_start) + + + +Profile stats for: [Callback]ProgressBar.on_train_epoch_start + 95808 function calls in 0.079 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 100 0.000 0.000 0.078 0.001 logger.py:57(on_train_epoch_start) + 300 0.000 0.000 0.077 0.000 std.py:1325(refresh) + 300 0.001 0.000 0.075 0.000 std.py:1464(display) + 300 0.000 0.000 0.057 0.000 std.py:457(print_status) + 300 0.000 0.000 0.052 0.000 std.py:451(fp_write) + 600 0.000 0.000 0.052 0.000 utils.py:194(inner) + 300 0.001 0.000 0.046 0.000 iostream.py:592(flush) + 300 0.000 0.000 0.042 0.000 threading.py:604(wait) + 300 0.001 0.000 0.041 0.000 threading.py:288(wait) + 2400 0.040 0.000 0.040 0.000 {method 'acquire' of '_thread.lock' objects} + 100 0.001 0.000 0.031 0.000 std.py:1360(reset) + 100 0.000 0.000 0.024 0.000 logger.py:65(_update_n) + 100 0.000 0.000 0.023 0.000 std.py:1382(set_description) + 300 0.001 0.000 0.018 0.000 std.py:1150(__str__) + 300 0.004 0.000 0.010 0.000 std.py:464(format_meter) + 300 0.001 0.000 0.007 0.000 std.py:1446(format_dict) + 300 0.002 0.000 0.006 0.000 utils.py:333(_screen_shape_linux) + 900 0.001 0.000 0.006 0.000 iostream.py:259(schedule) + 300 0.001 0.000 0.005 0.000 iostream.py:655(write) + 300 0.000 0.000 0.004 0.000 utils.py:378(disp_len) + 300 0.000 0.000 0.004 0.000 utils.py:374(_text_width) + 300 0.001 0.000 0.004 0.000 {built-in method builtins.sum} + 300 0.000 0.000 0.004 0.000 iostream.py:577(_schedule_flush) + 900 0.003 0.000 0.003 0.000 socket.py:626(send) + 300 0.003 0.000 0.003 0.000 {built-in method fcntl.ioctl} + 600 0.002 0.000 0.003 0.000 utils.py:273(_is_ascii) + 16204 0.002 0.000 0.003 0.000 utils.py:375() + 600 0.001 0.000 0.002 0.000 {method 'format' of 'str' objects} + 1200 0.001 0.000 0.001 0.000 threading.py:1185(is_alive) + 300 0.000 0.000 0.001 0.000 threading.py:555(__init__) + 300 0.000 0.000 0.001 0.000 utils.py:347() + 15904 0.001 0.000 0.001 0.000 {built-in method unicodedata.east_asian_width} + 400 0.001 0.000 0.001 0.000 std.py:400(format_interval) + 300 0.001 0.000 0.001 0.000 threading.py:236(__init__) + 25800 0.001 0.000 0.001 0.000 {built-in method builtins.ord} + 300 0.000 0.000 0.001 0.000 :674(__getitem__) + 300 0.000 0.000 0.001 0.000 std.py:106(release) + 300 0.000 0.000 0.001 0.000 std.py:102(acquire) + 300 0.001 0.000 0.001 0.000 std.py:186(__format__) + 1200 0.000 0.000 0.001 0.000 threading.py:1118(_wait_for_tstate_lock) + 300 0.000 0.000 0.000 0.000 :756(encode) + 100 0.000 0.000 0.000 0.000 {built-in method now} + 300 0.000 0.000 0.000 0.000 {method 'release' of '_multiprocessing.SemLock' objects} + 300 0.000 0.000 0.000 0.000 {method 'acquire' of '_multiprocessing.SemLock' objects} + 300 0.000 0.000 0.000 0.000 std.py:153(__init__) + 200 0.000 0.000 0.000 0.000 {built-in method fromtimestamp} + 300 0.000 0.000 0.000 0.000 {method 'sub' of 're.Pattern' objects} + 100 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 100 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 300 0.000 0.000 0.000 0.000 utils.py:139(__getattr__) + 100 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 300 0.000 0.000 0.000 0.000 iostream.py:364(fileno) + 300 0.000 0.000 0.000 0.000 threading.py:1446(current_thread) + 900 0.000 0.000 0.000 0.000 iostream.py:138(_event_pipe) + 1200 0.000 0.000 0.000 0.000 threading.py:568(is_set) + 100 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 300 0.000 0.000 0.000 0.000 threading.py:276(_acquire_restore) + 300 0.000 0.000 0.000 0.000 iostream.py:550(_is_master_process) + 600 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 600 0.000 0.000 0.000 0.000 {built-in method _thread.allocate_lock} + 300 0.000 0.000 0.000 0.000 iostream.py:505(parent_header) + 300 0.000 0.000 0.000 0.000 threading.py:267(__exit__) + 300 0.000 0.000 0.000 0.000 threading.py:264(__enter__) + 300 0.000 0.000 0.000 0.000 threading.py:273(_release_save) + 600 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 600 0.000 0.000 0.000 0.000 threading.py:1161(ident) + 300 0.000 0.000 0.000 0.000 threading.py:279(_is_owned) + 1100 0.000 0.000 0.000 0.000 {built-in method builtins.divmod} + 100 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 300 0.000 0.000 0.000 0.000 std.py:231(__call__) + 200 0.000 0.000 0.000 0.000 trainer.py:1467(current_epoch) + 1200 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 300 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 1200 0.000 0.000 0.000 0.000 {method 'append' of 'collections.deque' objects} + 300 0.000 0.000 0.000 0.000 utils.py:108(__init__) + 600 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 300 0.000 0.000 0.000 0.000 utils.py:112(__format__) + 300 0.000 0.000 0.000 0.000 {method 'encode' of 'str' objects} + 300 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.RLock' objects} + 300 0.000 0.000 0.000 0.000 std.py:167(colour) + 300 0.000 0.000 0.000 0.000 std.py:226(__init__) + 400 0.000 0.000 0.000 0.000 {built-in method time.time} + 600 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 300 0.000 0.000 0.000 0.000 {method 'write' of '_io.StringIO' objects} + 300 0.000 0.000 0.000 0.000 {built-in method _thread.get_ident} + 300 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.RLock' objects} + 300 0.000 0.000 0.000 0.000 {method '__enter__' of '_thread.lock' objects} + 300 0.000 0.000 0.000 0.000 std.py:163(colour) + 300 0.000 0.000 0.000 0.000 {method 'release' of '_thread.RLock' objects} + 300 0.000 0.000 0.000 0.000 {built-in method posix.getpid} + 300 0.000 0.000 0.000 0.000 {method 'get' of '_contextvars.ContextVar' objects} + 300 0.000 0.000 0.000 0.000 {built-in method builtins.abs} + 300 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects} + 300 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.lock' objects} + 300 0.000 0.000 0.000 0.000 {method 'release' of '_thread.lock' objects} + 100 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 100 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 100 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 100 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_epoch_start + 700 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 100 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 100 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 100 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 100 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 100 0.000 0.000 0.000 0.000 hooks.py:211(on_train_epoch_start) + 100 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 100 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: run_training_epoch + 13527 function calls (12537 primitive calls) in 30.235 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 100 0.000 0.000 30.235 0.302 training_epoch_loop.py:135(run) + 100 0.000 0.000 30.221 0.302 training_epoch_loop.py:192(advance) + 100 0.000 0.000 30.220 0.302 {built-in method builtins.next} + 100 0.000 0.000 30.220 0.302 fetchers.py:119(__next__) + 100 0.000 0.000 30.220 0.302 fetchers.py:55(__next__) + 100 0.000 0.000 30.220 0.302 training_epoch_loop.py:186(_on_before_fetch) + 100 0.000 0.000 30.220 0.302 advanced.py:65(start) + 100 30.220 0.302 30.220 0.302 {method 'enable' of '_lsprof.Profiler' objects} + 100 0.000 0.000 0.012 0.000 training_epoch_loop.py:176(on_run_start) + 495/99 0.000 0.000 0.012 0.000 {built-in method builtins.iter} + 99 0.000 0.000 0.012 0.000 fetchers.py:102(__iter__) + 99 0.000 0.000 0.012 0.000 fetchers.py:49(__iter__) + 99 0.000 0.000 0.011 0.000 combined_loader.py:347(__iter__) + 99 0.000 0.000 0.010 0.000 combined_loader.py:90(__iter__) + 99 0.000 0.000 0.010 0.000 combined_loader.py:41(__iter__) + 99 0.000 0.000 0.010 0.000 combined_loader.py:43() + 99 0.000 0.000 0.010 0.000 dataloader.py:426(__iter__) + 99 0.000 0.000 0.010 0.000 dataloader.py:382(_get_iterator) + 99 0.000 0.000 0.009 0.000 dataloader.py:659(__init__) + 99 0.001 0.000 0.009 0.000 dataloader.py:565(__init__) + 99 0.004 0.000 0.004 0.000 {method 'random_' of 'torch._C.TensorBase' objects} + 99 0.003 0.000 0.003 0.000 {built-in method torch.empty} + 99 0.000 0.000 0.001 0.000 fetchers.py:139(reset) + 100 0.000 0.000 0.001 0.000 training_epoch_loop.py:147(reset) + 99 0.000 0.000 0.001 0.000 fetchers.py:71(reset) + 990/495 0.000 0.000 0.001 0.000 {built-in method builtins.len} + 198/99 0.000 0.000 0.001 0.000 data.py:47(sized_len) + 99 0.000 0.000 0.001 0.000 combined_loader.py:355(__len__) + 99 0.000 0.000 0.001 0.000 combined_loader.py:96(__len__) + 1998 0.000 0.000 0.001 0.000 {built-in method builtins.isinstance} + 99 0.000 0.000 0.001 0.000 combined_loader.py:404(_get_iterables_lengths) + 100 0.000 0.000 0.001 0.000 loop.py:32(restarting) + 99 0.000 0.000 0.001 0.000 combined_loader.py:405() + 400 0.000 0.000 0.000 0.000 progress.py:172(reset_on_run) + 100 0.000 0.000 0.000 0.000 training_epoch_loop.py:116(done) + 99 0.000 0.000 0.000 0.000 {method 'item' of 'torch._C.TensorBase' objects} + 99 0.000 0.000 0.000 0.000 dataloader.py:457(__len__) + 100 0.000 0.000 0.000 0.000 training_epoch_loop.py:106(_is_training_done) + 100 0.000 0.000 0.000 0.000 progress.py:204(reset_on_run) + 100 0.000 0.000 0.000 0.000 progress.py:282(reset_on_run) + 99 0.000 0.000 0.000 0.000 dataloader.py:74(create_fetcher) + 397 0.000 0.000 0.000 0.000 :117(__instancecheck__) + 99 0.000 0.000 0.000 0.000 sampler.py:297(__len__) + 200 0.000 0.000 0.000 0.000 progress.py:114(reset) + 99 0.000 0.000 0.000 0.000 dataloader.py:93(_get_distributed_settings) + 300 0.000 0.000 0.000 0.000 progress.py:87(reset) + 100 0.000 0.000 0.000 0.000 progress.py:249(reset_on_run) + 397 0.000 0.000 0.000 0.000 {built-in method _abc._abc_instancecheck} + 99 0.000 0.000 0.000 0.000 combined_loader.py:68(__init__) + 100 0.000 0.000 0.000 0.000 training_epoch_loop.py:99(global_step) + 99 0.000 0.000 0.000 0.000 sampler.py:170(__len__) + 99 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 99 0.000 0.000 0.000 0.000 combined_loader.py:29(__init__) + 500 0.000 0.000 0.000 0.000 progress.py:56(reset) + 99 0.000 0.000 0.000 0.000 sampler.py:145(num_samples) + 99 0.000 0.000 0.000 0.000 distributed_c10d.py:973(is_initialized) + 100 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 198 0.000 0.000 0.000 0.000 combined_loader.py:100() + 198 0.000 0.000 0.000 0.000 dataloader.py:445(_index_sampler) + 100 0.000 0.000 0.000 0.000 training_epoch_loop.py:331(_num_ready_batches_reached) + 99 0.000 0.000 0.000 0.000 __init__.py:9(is_available) + 99 0.000 0.000 0.000 0.000 distributed_c10d.py:588(WORLD) + 198 0.000 0.000 0.000 0.000 fetchers.py:38(combined_loader) + 297 0.000 0.000 0.000 0.000 dataloader.py:441(_auto_collation) + 99 0.000 0.000 0.000 0.000 fetch.py:8(__init__) + 100 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 100 0.000 0.000 0.000 0.000 {built-in method builtins.vars} + 299 0.000 0.000 0.000 0.000 loop.py:27(restarting) + 99 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 99 0.000 0.000 0.000 0.000 sampler.py:274(__iter__) + 99 0.000 0.000 0.000 0.000 time_dataset.py:842(__len__) + 99 0.000 0.000 0.000 0.000 {built-in method builtins.min} + 100 0.000 0.000 0.000 0.000 trainer.py:1467(current_epoch) + 99 0.000 0.000 0.000 0.000 distributed_c10d.py:460(default_pg) + 100 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 100 0.000 0.000 0.000 0.000 module.py:295(automatic_optimization) + 100 0.000 0.000 0.000 0.000 trainer.py:1523(num_training_batches) + 100 0.000 0.000 0.000 0.000 utilities.py:113(_is_max_limit_reached) + 100 0.000 0.000 0.000 0.000 {method 'values' of 'dict' objects} + 99 0.000 0.000 0.000 0.000 combined_loader.py:308(flattened) + + + +Profile stats for: [_TrainingEpochLoop].train_dataloader_next + 2976723 function calls (2916923 primitive calls) in 2.824 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) +23000/4600 0.007 0.000 2.819 0.001 {built-in method builtins.next} + 4600 0.004 0.000 2.817 0.001 combined_loader.py:339(__next__) + 4600 0.007 0.000 2.800 0.001 combined_loader.py:72(__next__) + 4600 0.013 0.000 2.790 0.001 dataloader.py:626(__next__) + 4600 0.107 0.000 2.730 0.001 dataloader.py:673(_next_data) + 4600 0.005 0.000 2.579 0.001 fetch.py:46(fetch) + 4600 0.032 0.000 2.254 0.000 fetch.py:51() + 146200 0.115 0.000 2.222 0.000 time_dataset.py:845(__getitem__) + 146200 0.115 0.000 2.107 0.000 time_dataset.py:171(__getitem__) + 146200 0.246 0.000 1.889 0.000 time_dataset.py:297(tabularize_univariate_datetime_single_index) + 146200 1.242 0.000 1.250 0.000 time_dataset.py:156(get_sample_seasonalities) + 146200 0.181 0.000 0.322 0.000 time_dataset.py:709(get_sample_targets) + 4600 0.003 0.000 0.320 0.000 collate.py:255(default_collate) +41400/4600 0.057 0.000 0.317 0.000 collate.py:108(collate) + 4600 0.004 0.000 0.251 0.000 collate.py:173() + 438600 0.200 0.000 0.200 0.000 {method 'unsqueeze' of 'torch._C.TensorBase' objects} +13800/9200 0.014 0.000 0.147 0.000 collate.py:154() + 146200 0.103 0.000 0.103 0.000 time_dataset.py:226(sample_index_to_df_index) + 18400 0.019 0.000 0.089 0.000 collate.py:194(collate_tensor_fn) + 18400 0.069 0.000 0.069 0.000 {built-in method torch.stack} + 13800 0.021 0.000 0.064 0.000 copy.py:66(copy) + 4600 0.001 0.000 0.044 0.000 dataloader.py:620(_next_index) + 4600 0.019 0.000 0.042 0.000 sampler.py:274(__iter__) + 202402 0.019 0.000 0.035 0.000 {built-in method builtins.isinstance} + 4600 0.009 0.000 0.030 0.000 {built-in method builtins.all} + 13800 0.010 0.000 0.027 0.000 {method '__reduce_ex__' of 'object' objects} + 4600 0.003 0.000 0.024 0.000 profiler.py:604(__enter__) + 146300 0.012 0.000 0.023 0.000 sampler.py:152(__iter__) + 23000 0.023 0.000 0.023 0.000 collate.py:154() + 146200 0.017 0.000 0.021 0.000 collate.py:168() + 4600 0.002 0.000 0.021 0.000 _ops.py:846(__call__) + 4600 0.019 0.000 0.019 0.000 {built-in method torch._ops.profiler._record_function_enter_new} + 448100 0.017 0.000 0.017 0.000 {built-in method builtins.len} + 13800 0.013 0.000 0.017 0.000 copyreg.py:113(_slotnames) + 4600 0.009 0.000 0.017 0.000 profiler.py:610(__exit__) + 41400 0.005 0.000 0.016 0.000 :117(__instancecheck__) + 41400 0.007 0.000 0.010 0.000 {built-in method _abc._abc_instancecheck} + 4600 0.003 0.000 0.009 0.000 _pytree.py:811(tree_unflatten) + 146200 0.008 0.000 0.008 0.000 {method 'items' of 'collections.OrderedDict' objects} + 4600 0.001 0.000 0.007 0.000 _ops.py:591(__call__) + 13800 0.007 0.000 0.007 0.000 copy.py:259(_reconstruct) + 4600 0.006 0.000 0.006 0.000 {built-in method torch._ops.profiler.} + 4600 0.004 0.000 0.006 0.000 profiler.py:593(__init__) + 200 0.006 0.000 0.006 0.000 {built-in method torch.randperm} + 4600 0.004 0.000 0.005 0.000 _pytree.py:734(unflatten) + 27600 0.005 0.000 0.005 0.000 {built-in method builtins.getattr} + 4600 0.002 0.000 0.005 0.000 training_epoch_loop.py:189(_on_after_fetch) + 13800 0.004 0.000 0.004 0.000 {method 'update' of 'collections.OrderedDict' objects} + 23000 0.004 0.000 0.004 0.000 {built-in method builtins.hasattr} + 4600 0.001 0.000 0.004 0.000 :121(__subclasscheck__) + 4600 0.002 0.000 0.003 0.000 {built-in method _abc._abc_subclasscheck} + 200 0.003 0.000 0.003 0.000 {method 'tolist' of 'torch._C.TensorBase' objects} + 32200 0.003 0.000 0.003 0.000 {method 'get' of 'dict' objects} + 4600 0.002 0.000 0.003 0.000 advanced.py:71(stop) + 4600 0.002 0.000 0.002 0.000 typing.py:349(inner) + 100 0.001 0.000 0.001 0.000 {method 'random_' of 'torch._C.TensorBase' objects} + 18400 0.001 0.000 0.001 0.000 worker.py:89(get_worker_info) + 13800 0.001 0.000 0.001 0.000 {method 'get' of 'mappingproxy' objects} + 13800 0.001 0.000 0.001 0.000 {built-in method builtins.issubclass} + 4600 0.001 0.000 0.001 0.000 _pytree.py:650(is_leaf) + 4600 0.001 0.000 0.001 0.000 :315(__subclasshook__) + 100 0.001 0.000 0.001 0.000 {built-in method torch.empty} + 4600 0.000 0.000 0.000 0.000 {method '__exit__' of 'torch._C.DisableTorchFunctionSubclass' objects} + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 4600 0.000 0.000 0.000 0.000 {built-in method builtins.iter} + 4600 0.000 0.000 0.000 0.000 __init__.py:127(annotate) + 100 0.000 0.000 0.000 0.000 {method 'item' of 'torch._C.TensorBase' objects} + 4600 0.000 0.000 0.000 0.000 collate.py:237(collate_str_fn) + 4600 0.000 0.000 0.000 0.000 _jit_internal.py:1120(is_scripting) + 200 0.000 0.000 0.000 0.000 sampler.py:145(num_samples) + 100 0.000 0.000 0.000 0.000 {method 'manual_seed' of 'torch._C.Generator' objects} + 300 0.000 0.000 0.000 0.000 time_dataset.py:842(__len__) + 2 0.000 0.000 0.000 0.000 ipkernel.py:775(_clean_thread_parent_frames) + 1 0.000 0.000 0.000 0.000 ipkernel.py:790() + 1 0.000 0.000 0.000 0.000 threading.py:1494(enumerate) + 10 0.000 0.000 0.000 0.000 threading.py:1161(ident) + 4 0.000 0.000 0.000 0.000 {method 'keys' of 'dict' objects} + 2 0.000 0.000 0.000 0.000 {method 'values' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.RLock' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_before_batch_transfer + 32200 function calls in 0.004 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.004 0.000 contextlib.py:141(__exit__) + 4600 0.000 0.000 0.003 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.002 0.000 profiler.py:55(profile) + 4600 0.001 0.000 0.002 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 hooks.py:613(on_before_batch_transfer) + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Strategy]SingleDeviceStrategy.batch_to_device + 147200 function calls (142600 primitive calls) in 6.947 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.004 0.000 6.947 0.002 strategy.py:262(batch_to_device) + 4600 0.002 0.000 6.943 0.002 module.py:354(_apply_batch_transfer_handler) + 4600 0.005 0.000 6.941 0.002 module.py:336(_call_batch_hook) + 4600 0.009 0.000 6.935 0.002 call.py:137(_call_lightning_module_hook) + 4600 0.001 0.000 6.906 0.002 contextlib.py:132(__enter__) + 4600 0.001 0.000 6.905 0.002 {built-in method builtins.next} + 4600 0.001 0.000 6.904 0.002 profiler.py:55(profile) + 4600 0.001 0.000 6.904 0.002 advanced.py:65(start) + 4600 6.902 0.002 6.902 0.002 {method 'enable' of '_lsprof.Profiler' objects} + 4600 0.006 0.000 0.011 0.000 module.py:1711(__setattr__) +18400/13800 0.002 0.000 0.005 0.000 {built-in method builtins.isinstance} + 4600 0.002 0.000 0.004 0.000 contextlib.py:287(helper) + 4600 0.002 0.000 0.003 0.000 parameter.py:8(__instancecheck__) + 4600 0.002 0.000 0.003 0.000 contextlib.py:104(__init__) + 4600 0.001 0.000 0.002 0.000 trainer.py:1178(lightning_module) + 4600 0.001 0.000 0.002 0.000 __init__.py:1467(debug) + 4600 0.001 0.000 0.001 0.000 data_connector.py:349(get_instance) + 4600 0.001 0.000 0.001 0.000 __init__.py:1734(isEnabledFor) + 9200 0.001 0.000 0.001 0.000 {built-in method builtins.getattr} + 13800 0.001 0.000 0.001 0.000 {method 'get' of 'dict' objects} + 9200 0.001 0.000 0.001 0.000 strategy.py:360(lightning_module) + 4600 0.001 0.000 0.001 0.000 single_device.py:71(root_device) + 4600 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 4600 0.000 0.000 0.000 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 4600 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + + + +Profile stats for: [LightningModule]TimeNet.transfer_batch_to_device + 4916000 function calls (4083800 primitive calls) in 6.855 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.002 0.000 6.850 0.001 hooks.py:564(transfer_batch_to_device) + 4600 0.004 0.000 6.848 0.001 apply_func.py:71(move_data_to_device) + 4600 0.009 0.000 6.844 0.001 apply_func.py:23(apply_to_collection) +187600/4600 0.265 0.000 6.828 0.001 apply_func.py:84(_apply_to_collection_slow) + 18400 0.031 0.000 5.960 0.000 apply_func.py:91(batch_to) + 18400 5.927 0.000 5.927 0.000 {method 'to' of 'torch._C.TensorBase' objects} +1682800/1033600 0.135 0.000 0.488 0.000 {built-in method builtins.isinstance} + 324600 0.067 0.000 0.334 0.000 typing.py:1297(__instancecheck__) + 324600 0.098 0.000 0.267 0.000 typing.py:1572(__subclasscheck__) + 324600 0.048 0.000 0.141 0.000 {built-in method builtins.issubclass} + 146200 0.026 0.000 0.097 0.000 apply_func.py:17(is_dataclass_instance) + 324600 0.034 0.000 0.093 0.000 :121(__subclasscheck__) + 146200 0.038 0.000 0.071 0.000 dataclasses.py:1256(is_dataclass) + 324600 0.046 0.000 0.058 0.000 {built-in method _abc._abc_subclasscheck} + 196800 0.024 0.000 0.048 0.000 :117(__instancecheck__) + 155400 0.021 0.000 0.028 0.000 apply_func.py:11(is_namedtuple) + 146200 0.026 0.000 0.026 0.000 {built-in method builtins.hasattr} + 196800 0.023 0.000 0.023 0.000 {built-in method _abc._abc_instancecheck} + 146200 0.013 0.000 0.013 0.000 :315(__subclasshook__) + 183000 0.010 0.000 0.010 0.000 {method 'append' of 'list' objects} + 4600 0.001 0.000 0.005 0.000 contextlib.py:141(__exit__) + 4600 0.001 0.000 0.004 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.004 0.000 profiler.py:55(profile) + 4600 0.001 0.000 0.004 0.000 {built-in method builtins.all} + 9200 0.001 0.000 0.003 0.000 apply_func.py:65() + 4600 0.002 0.000 0.003 0.000 advanced.py:71(stop) + 13800 0.001 0.000 0.001 0.000 {method 'items' of 'collections.OrderedDict' objects} + 4600 0.001 0.000 0.001 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_after_batch_transfer + 32200 function calls in 0.004 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.004 0.000 contextlib.py:141(__exit__) + 4600 0.000 0.000 0.003 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.002 0.000 profiler.py:55(profile) + 4600 0.001 0.000 0.002 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 hooks.py:641(on_after_batch_transfer) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]ProgressBar.on_train_batch_start + 46000 function calls in 0.006 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.003 0.000 contextlib.py:141(__exit__) + 4600 0.000 0.000 0.003 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.002 0.000 profiler.py:55(profile) + 4600 0.002 0.000 0.002 0.000 trainer.py:1178(lightning_module) + 4600 0.001 0.000 0.002 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 4600 0.000 0.000 0.000 0.000 callback.py:76(on_train_batch_start) + 4600 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_batch_start + 32200 function calls in 0.003 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.003 0.000 contextlib.py:141(__exit__) + 4600 0.000 0.000 0.003 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.002 0.000 profiler.py:55(profile) + 4600 0.001 0.000 0.001 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 hooks.py:68(on_train_batch_start) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Strategy]SingleDeviceStrategy.on_train_batch_start + 32200 function calls in 0.003 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.003 0.000 contextlib.py:141(__exit__) + 4600 0.000 0.000 0.002 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.002 0.000 profiler.py:55(profile) + 4600 0.001 0.000 0.001 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 strategy.py:577(on_train_batch_start) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: run_training_batch + 174800 function calls (170200 primitive calls) in 20.043 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.005 0.000 20.040 0.004 manual.py:91(run) + 4600 0.004 0.000 20.030 0.004 manual.py:104(advance) + 4600 0.010 0.000 20.026 0.004 call.py:294(_call_strategy_hook) + 4600 0.001 0.000 19.995 0.004 contextlib.py:132(__enter__) + 4600 0.001 0.000 19.994 0.004 {built-in method builtins.next} + 4600 0.001 0.000 19.994 0.004 profiler.py:55(profile) + 4600 0.002 0.000 19.993 0.004 advanced.py:65(start) + 4600 19.991 0.004 19.991 0.004 {method 'enable' of '_lsprof.Profiler' objects} + 4600 0.006 0.000 0.011 0.000 module.py:1711(__setattr__) +13800/9200 0.002 0.000 0.005 0.000 {built-in method builtins.isinstance} + 4600 0.002 0.000 0.004 0.000 contextlib.py:287(helper) + 9200 0.003 0.000 0.004 0.000 trainer.py:1178(lightning_module) + 4600 0.004 0.000 0.004 0.000 manual.py:98(on_run_start) + 4600 0.003 0.000 0.003 0.000 parameter.py:8(__instancecheck__) + 4600 0.002 0.000 0.003 0.000 contextlib.py:104(__init__) + 4600 0.001 0.000 0.002 0.000 __init__.py:1467(debug) + 23000 0.002 0.000 0.002 0.000 trainer.py:1125(strategy) + 4600 0.001 0.000 0.001 0.000 __init__.py:1734(isEnabledFor) + 13800 0.001 0.000 0.001 0.000 {method 'get' of 'dict' objects} + 9200 0.001 0.000 0.001 0.000 {built-in method builtins.getattr} + 9200 0.001 0.000 0.001 0.000 strategy.py:360(lightning_module) + 4600 0.001 0.000 0.001 0.000 contextlib.py:428(__init__) + 4600 0.000 0.000 0.000 0.000 module.py:295(automatic_optimization) + 4600 0.000 0.000 0.000 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 4600 0.000 0.000 0.000 0.000 {method 'values' of 'collections.OrderedDict' objects} + 4600 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 4600 0.000 0.000 0.000 0.000 contextlib.py:431(__enter__) + + + +Profile stats for: [Strategy]SingleDeviceStrategy.training_step + 1568600 function calls (1559400 primitive calls) in 19.954 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.009 0.000 19.956 0.004 strategy.py:379(training_step) + 4600 0.024 0.000 19.932 0.004 time_net.py:776(training_step) + 4600 0.006 0.000 11.844 0.003 module.py:1058(manual_backward) + 4600 0.005 0.000 11.833 0.003 strategy.py:191(backward) + 4600 0.003 0.000 11.827 0.003 precision.py:45(pre_backward) + 4600 0.011 0.000 11.823 0.003 call.py:185(_call_callback_hooks) + 9200 0.003 0.000 11.797 0.001 contextlib.py:132(__enter__) + 9200 0.002 0.000 11.794 0.001 {built-in method builtins.next} + 4600 0.001 0.000 11.786 0.003 profiler.py:55(profile) + 4600 0.002 0.000 11.785 0.003 advanced.py:65(start) + 4600 11.783 0.003 11.783 0.003 {method 'enable' of '_lsprof.Profiler' objects} + 4600 0.155 0.000 3.951 0.001 time_net.py:760(loss_func) + 4600 0.568 0.000 3.661 0.001 time_net.py:513(forward) + 13800 0.011 0.000 3.155 0.000 module.py:1528(_wrapped_call_impl) + 13800 0.023 0.000 3.144 0.000 module.py:1534(_call_impl) + 4600 2.365 0.001 2.365 0.001 {built-in method torch.tensor} + 4600 0.308 0.000 2.262 0.000 piecewise_linear.py:53(forward) + 4600 0.852 0.000 1.085 0.000 time_net.py:877(_get_time_based_sample_weight) + 4600 0.502 0.000 0.884 0.000 piecewise_linear.py:230(compute_m_t) + 4600 0.212 0.000 0.730 0.000 fourier.py:66(forward) + 9200 0.258 0.000 0.499 0.000 fourier.py:114(compute_fourier) + 4600 0.011 0.000 0.422 0.000 _compile.py:20(inner) + 18400 0.403 0.000 0.403 0.000 {built-in method torch.sum} + 4600 0.345 0.000 0.345 0.000 {built-in method torch._C._nn.one_hot} + 4600 0.313 0.000 0.325 0.000 piecewise_linear.py:263(compute_trend) + 4600 0.009 0.000 0.291 0.000 decorators.py:36(disable) + 4600 0.137 0.000 0.264 0.000 piecewise_linear.py:206(compute_k_t) + 4600 0.263 0.000 0.263 0.000 {built-in method torch.cat} + 4600 0.028 0.000 0.259 0.000 eval_frame.py:351(__call__) + 9200 0.228 0.000 0.228 0.000 {method 'sum' of 'torch._C.TensorBase' objects} + 4600 0.013 0.000 0.128 0.000 inspect.py:936(getsourcefile) + 4600 0.003 0.000 0.125 0.000 loss.py:938(forward) + 4600 0.010 0.000 0.122 0.000 functional.py:3229(smooth_l1_loss) + 4600 0.008 0.000 0.120 0.000 eval_frame.py:428(_fn) + 4600 0.040 0.000 0.100 0.000 optimizer.py:793(zero_grad) + 4600 0.093 0.000 0.093 0.000 {method 'mean' of 'torch._C.TensorBase' objects} + 4600 0.092 0.000 0.092 0.000 {built-in method torch._C._nn.smooth_l1_loss} + 4600 0.002 0.000 0.083 0.000 trace_rules.py:3377(check) + 4600 0.013 0.000 0.080 0.000 trace_rules.py:3342(check_verbose) + 4600 0.078 0.000 0.078 0.000 {built-in method torch.clamp} + 4600 0.003 0.000 0.077 0.000 :16(exists) + 4600 0.075 0.000 0.075 0.000 {built-in method torch.cos} + 4600 0.074 0.000 0.074 0.000 {built-in method posix.stat} + 4600 0.072 0.000 0.072 0.000 {built-in method torch.ones_like} + 18400 0.072 0.000 0.072 0.000 {built-in method torch.zeros} + 59800 0.059 0.000 0.059 0.000 {method 'unsqueeze' of 'torch._C.TensorBase' objects} + 9200 0.006 0.000 0.037 0.000 package_importer.py:694(_patched_getfile) + 4600 0.008 0.000 0.036 0.000 trace_rules.py:3432(lookup_inner) +165600/156400 0.016 0.000 0.032 0.000 {built-in method builtins.isinstance} + 23000 0.032 0.000 0.032 0.000 {method 'permute' of 'torch._C.TensorBase' objects} + 4600 0.005 0.000 0.030 0.000 profiler.py:604(__enter__) + 9200 0.014 0.000 0.029 0.000 inspect.py:896(getfile) + 9200 0.015 0.000 0.029 0.000 module.py:1711(__setattr__) + 13800 0.007 0.000 0.026 0.000 {built-in method builtins.any} + 4600 0.001 0.000 0.025 0.000 _ops.py:846(__call__) + 4600 0.024 0.000 0.024 0.000 {built-in method torch._ops.profiler._record_function_enter_new} + 64400 0.023 0.000 0.023 0.000 module.py:1696(__getattr__) + 4600 0.005 0.000 0.020 0.000 eval_frame.py:550(__init__) + 4600 0.007 0.000 0.019 0.000 trace_rules.py:3275(check_file) + 4600 0.009 0.000 0.017 0.000 functional.py:47(broadcast_tensors) + 4600 0.002 0.000 0.016 0.000 utils.py:862(getfile) + 4600 0.008 0.000 0.015 0.000 profiler.py:610(__exit__) + 4600 0.010 0.000 0.015 0.000 eval_frame.py:290(__init__) + 92000 0.012 0.000 0.014 0.000 {built-in method builtins.getattr} + 9200 0.004 0.000 0.014 0.000 container.py:734(__getitem__) + 4600 0.008 0.000 0.014 0.000 functools.py:35(update_wrapper) + 4600 0.010 0.000 0.013 0.000 module.py:164(optimizers) + 32200 0.006 0.000 0.009 0.000 trace_rules.py:3279() + 4600 0.002 0.000 0.009 0.000 eval_frame.py:448() + 13800 0.007 0.000 0.009 0.000 base.py:127(__instancecheck__) + 9200 0.007 0.000 0.009 0.000 parameter.py:8(__instancecheck__) + 18400 0.009 0.000 0.009 0.000 device_dtype_mixin.py:39(device) + 9200 0.003 0.000 0.008 0.000 contextlib.py:287(helper) + 4600 0.006 0.000 0.007 0.000 eval_frame.py:141(change) + 9200 0.007 0.000 0.007 0.000 {method 'detach' of 'torch._C.TensorBase' objects} + 4600 0.001 0.000 0.007 0.000 _ops.py:591(__call__) + 23000 0.004 0.000 0.006 0.000 optimizer.py:169(__getattr__) + 4600 0.003 0.000 0.006 0.000 precision.py:167(train_step_context) + 13800 0.004 0.000 0.006 0.000 inspect.py:943() + 4600 0.004 0.000 0.006 0.000 profiler.py:593(__init__) + 4600 0.005 0.000 0.006 0.000 trace_rules.py:2840(is_aten_op_or_tensor_method) + 4600 0.005 0.000 0.005 0.000 {built-in method torch._ops.profiler.} + 23000 0.004 0.000 0.005 0.000 {built-in method builtins.hasattr} + 9200 0.005 0.000 0.005 0.000 contextlib.py:104(__init__) + 13800 0.003 0.000 0.005 0.000 eval_frame.py:265(innermost_fn) + 4600 0.005 0.000 0.005 0.000 {built-in method torch.broadcast_tensors} + 4600 0.005 0.000 0.005 0.000 {built-in method torch.unsqueeze} + 18400 0.003 0.000 0.005 0.000 inspect.py:946() + 13800 0.004 0.000 0.004 0.000 {built-in method torch._C._get_tracing_state} + 23000 0.004 0.000 0.004 0.000 {method 'endswith' of 'str' objects} + 4600 0.002 0.000 0.004 0.000 eval_frame.py:119(backend_cache_manager) + 18400 0.003 0.000 0.004 0.000 inspect.py:292(isclass) + 41400 0.004 0.000 0.004 0.000 {method 'get' of 'dict' objects} + 27600 0.003 0.000 0.003 0.000 {method 'startswith' of 'str' objects} + 9200 0.002 0.000 0.003 0.000 container.py:725(_key_to_attr) + 4600 0.002 0.000 0.003 0.000 precision.py:68(forward_context) + 13800 0.003 0.000 0.003 0.000 module.py:215(trainer) + 9200 0.002 0.000 0.003 0.000 inspect.py:456(istraceback) + 13800 0.003 0.000 0.003 0.000 trainer.py:1125(strategy) + 9200 0.002 0.000 0.002 0.000 inspect.py:466(isframe) + 27600 0.002 0.000 0.002 0.000 {built-in method builtins.len} + 4600 0.002 0.000 0.002 0.000 functools.py:65(wraps) + 9200 0.002 0.000 0.002 0.000 inspect.py:283(ismodule) + 36800 0.002 0.000 0.002 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 4600 0.001 0.000 0.002 0.000 __init__.py:1467(debug) + 4600 0.002 0.000 0.002 0.000 trainer.py:1178(lightning_module) + 4600 0.001 0.000 0.002 0.000 _VF.py:26(__getattr__) + 4600 0.002 0.000 0.002 0.000 module.py:1361(_verify_is_manual_optimization) + 9200 0.002 0.000 0.002 0.000 inspect.py:300(ismethod) + 4600 0.002 0.000 0.002 0.000 time_net.py:390(_compute_quantile_forecasts_from_diffs) + 9200 0.002 0.000 0.002 0.000 inspect.py:378(isfunction) + 27600 0.002 0.000 0.002 0.000 strategy.py:360(lightning_module) + 4600 0.001 0.000 0.002 0.000 utils.py:435(hashable) + 23000 0.002 0.000 0.002 0.000 {built-in method builtins.setattr} + 4600 0.002 0.000 0.002 0.000 :2(__init__) + 9200 0.001 0.000 0.002 0.000 inspect.py:480(iscode) + 9200 0.002 0.000 0.002 0.000 {method 'size' of 'torch._C.TensorBase' objects} + 9200 0.002 0.000 0.002 0.000 strategy.py:93(precision_plugin) + 4600 0.001 0.000 0.001 0.000 typing.py:349(inner) + 9200 0.001 0.000 0.001 0.000 {built-in method torch._C._dynamo.eval_frame.set_eval_frame} + 18400 0.001 0.000 0.001 0.000 {method 'keys' of 'collections.OrderedDict' objects} + 18400 0.001 0.000 0.001 0.000 {built-in method builtins.callable} + 9200 0.001 0.000 0.001 0.000 strategy.py:351(model) + 4600 0.001 0.000 0.001 0.000 eval_frame.py:149(revert) + 4600 0.001 0.000 0.001 0.000 __init__.py:1734(isEnabledFor) + 4600 0.001 0.000 0.001 0.000 callback.py:32(state_key) + 4600 0.001 0.000 0.001 0.000 _reduction.py:7(get_enum) + 4600 0.001 0.000 0.001 0.000 {method 'setdefault' of 'dict' objects} + 4600 0.001 0.000 0.001 0.000 contextlib.py:751(__init__) + 4600 0.001 0.000 0.001 0.000 {method 'update' of 'dict' objects} + 9200 0.001 0.000 0.001 0.000 eval_frame.py:261(always_false) + 4600 0.000 0.000 0.000 0.000 module.py:295(automatic_optimization) + 4600 0.000 0.000 0.000 0.000 {method '__exit__' of 'torch._C.DisableTorchFunctionSubclass' objects} + 4600 0.000 0.000 0.000 0.000 {built-in method torch._C._has_torch_function_variadic} + 4600 0.000 0.000 0.000 0.000 {built-in method torch._C._has_torch_function} + 4600 0.000 0.000 0.000 0.000 {built-in method builtins.id} + 4600 0.000 0.000 0.000 0.000 eval_frame.py:257(nothing) + 4600 0.000 0.000 0.000 0.000 {built-in method builtins.hash} + 4600 0.000 0.000 0.000 0.000 strategy.py:345(pre_backward) + 4600 0.000 0.000 0.000 0.000 contextlib.py:754(__enter__) + 4600 0.000 0.000 0.000 0.000 __init__.py:127(annotate) + 4600 0.000 0.000 0.000 0.000 _jit_internal.py:1120(is_scripting) + 4600 0.000 0.000 0.000 0.000 {method 'items' of 'collections.OrderedDict' objects} + + + +Profile stats for: [Callback]ProgressBar.on_before_backward + 46000 function calls in 0.006 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.004 0.000 contextlib.py:141(__exit__) + 4600 0.000 0.000 0.003 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.003 0.000 profiler.py:55(profile) + 4600 0.001 0.000 0.002 0.000 trainer.py:1178(lightning_module) + 4600 0.001 0.000 0.002 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 callback.py:274(on_before_backward) + 4600 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_before_backward + 32200 function calls in 0.004 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.004 0.000 contextlib.py:141(__exit__) + 4600 0.000 0.000 0.003 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.002 0.000 profiler.py:55(profile) + 4600 0.001 0.000 0.002 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 hooks.py:280(on_before_backward) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]ProgressBar.on_after_backward + 46000 function calls in 0.007 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.004 0.000 contextlib.py:141(__exit__) + 4600 0.001 0.000 0.004 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.003 0.000 profiler.py:55(profile) + 4600 0.002 0.000 0.002 0.000 trainer.py:1178(lightning_module) + 4600 0.002 0.000 0.002 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 4600 0.000 0.000 0.000 0.000 callback.py:277(on_after_backward) + 4600 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_after_backward + 32200 function calls in 0.004 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.003 0.000 contextlib.py:141(__exit__) + 4600 0.000 0.000 0.003 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.002 0.000 profiler.py:55(profile) + 4600 0.001 0.000 0.002 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 hooks.py:289(on_after_backward) + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: optimizer_step + 289800 function calls (285200 primitive calls) in 4.239 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.006 0.000 4.239 0.001 strategy.py:219(optimizer_step) + 4600 0.004 0.000 4.231 0.001 precision.py:112(optimizer_step) + 4600 0.004 0.000 4.228 0.001 lr_scheduler.py:70(wrapper) + 4600 0.014 0.000 4.224 0.001 optimizer.py:374(wrapper) + 4600 0.008 0.000 4.182 0.001 optimizer.py:58(_use_grad) + 4600 0.006 0.000 4.170 0.001 adamw.py:152(step) + 4600 0.002 0.000 4.149 0.001 precision.py:95(_wrap_closure) + 4600 0.002 0.000 4.146 0.001 precision.py:83(_after_closure) + 4600 0.010 0.000 4.143 0.001 call.py:185(_call_callback_hooks) + 4600 0.001 0.000 4.111 0.001 contextlib.py:132(__enter__) + 4600 0.001 0.000 4.110 0.001 {built-in method builtins.next} + 4600 0.001 0.000 4.109 0.001 profiler.py:55(profile) + 4600 0.002 0.000 4.109 0.001 advanced.py:65(start) + 4600 4.107 0.001 4.107 0.001 {method 'enable' of '_lsprof.Profiler' objects} + 4600 0.003 0.000 0.021 0.000 profiler.py:604(__enter__) + 4600 0.001 0.000 0.018 0.000 _ops.py:846(__call__) + 4600 0.017 0.000 0.017 0.000 {built-in method torch._ops.profiler._record_function_enter_new} + 4600 0.006 0.000 0.011 0.000 module.py:1711(__setattr__) + 4600 0.004 0.000 0.009 0.000 optimizer.py:327(_cuda_graph_capture_health_check) +18400/13800 0.002 0.000 0.005 0.000 {built-in method builtins.isinstance} + 4600 0.003 0.000 0.005 0.000 profiler.py:593(__init__) + 4600 0.002 0.000 0.004 0.000 contextlib.py:287(helper) + 4600 0.002 0.000 0.004 0.000 _utils.py:851(is_compiling) + 4600 0.002 0.000 0.004 0.000 grad_mode.py:183(__init__) + 4600 0.002 0.000 0.003 0.000 parameter.py:8(__instancecheck__) + 4600 0.002 0.000 0.003 0.000 grad_mode.py:134(__enter__) + 4600 0.002 0.000 0.003 0.000 _contextlib.py:149(__new__) + 4600 0.002 0.000 0.003 0.000 contextlib.py:104(__init__) + 4600 0.002 0.000 0.002 0.000 trainer.py:1178(lightning_module) + 4600 0.002 0.000 0.002 0.000 __init__.py:157(is_compiling) + 4600 0.001 0.000 0.002 0.000 __init__.py:1467(debug) + 9200 0.002 0.000 0.002 0.000 {built-in method torch._C._set_grad_enabled} + 4600 0.001 0.000 0.001 0.000 typing.py:349(inner) + 13800 0.001 0.000 0.001 0.000 {built-in method torch.is_grad_enabled} + 4600 0.001 0.000 0.001 0.000 module.py:215(trainer) + 9200 0.001 0.000 0.001 0.000 {built-in method builtins.getattr} + 4600 0.001 0.000 0.001 0.000 __init__.py:33(is_built) + 4600 0.001 0.000 0.001 0.000 __init__.py:1734(isEnabledFor) + 13800 0.001 0.000 0.001 0.000 {method 'get' of 'dict' objects} + 4600 0.001 0.000 0.001 0.000 {built-in method __new__ of type object at 0x101877ca8} + 4600 0.001 0.000 0.001 0.000 callback.py:32(state_key) + 9200 0.001 0.000 0.001 0.000 strategy.py:360(lightning_module) + 9200 0.001 0.000 0.001 0.000 {method 'values' of 'collections.OrderedDict' objects} + 4600 0.001 0.000 0.001 0.000 strategy.py:93(precision_plugin) + 4600 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 4600 0.000 0.000 0.000 0.000 {function _ParameterMeta.__instancecheck__ at 0x123a18860} + 4600 0.000 0.000 0.000 0.000 decorators.py:148(graph_break) + 4600 0.000 0.000 0.000 0.000 _jit_internal.py:1120(is_scripting) + 4600 0.000 0.000 0.000 0.000 __init__.py:127(annotate) + 4600 0.000 0.000 0.000 0.000 {built-in method builtins.callable} + 4600 0.000 0.000 0.000 0.000 optimizer.py:34(do_nothing_closure) + 4600 0.000 0.000 0.000 0.000 typing.py:2246(cast) + + + +Profile stats for: [Callback]ProgressBar.on_before_optimizer_step + 46000 function calls in 0.006 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.004 0.000 contextlib.py:141(__exit__) + 4600 0.000 0.000 0.003 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.002 0.000 profiler.py:55(profile) + 4600 0.001 0.000 0.002 0.000 trainer.py:1178(lightning_module) + 4600 0.001 0.000 0.002 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 4600 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 callback.py:280(on_before_optimizer_step) + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_before_optimizer_step + 32200 function calls in 0.004 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.003 0.000 contextlib.py:141(__exit__) + 4600 0.000 0.000 0.003 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.002 0.000 profiler.py:55(profile) + 4600 0.001 0.000 0.002 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 hooks.py:298(on_before_optimizer_step) + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]ProgressBar.on_train_batch_end + 46000 function calls in 0.008 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.005 0.000 contextlib.py:141(__exit__) + 4600 0.001 0.000 0.004 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.003 0.000 profiler.py:55(profile) + 4600 0.002 0.000 0.003 0.000 trainer.py:1178(lightning_module) + 4600 0.002 0.000 0.002 0.000 advanced.py:71(stop) + 4600 0.001 0.000 0.001 0.000 strategy.py:360(lightning_module) + 4600 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 logger.py:62(on_train_batch_end) + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_batch_end + 32200 function calls in 0.004 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 4600 0.001 0.000 0.004 0.000 contextlib.py:141(__exit__) + 4600 0.000 0.000 0.003 0.000 {built-in method builtins.next} + 4600 0.001 0.000 0.002 0.000 profiler.py:55(profile) + 4600 0.001 0.000 0.002 0.000 advanced.py:71(stop) + 4600 0.000 0.000 0.000 0.000 hooks.py:79(on_train_batch_end) + 4600 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 4600 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]ProgressBar.on_train_epoch_end + 85723 function calls (85719 primitive calls) in 0.266 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 100 0.000 0.000 0.265 0.003 tqdm_progress.py:278(on_train_epoch_end) + 100 0.000 0.000 0.215 0.002 progress_bar.py:177(get_metrics) + 100 0.000 0.000 0.214 0.002 trainer.py:1632(progress_bar_metrics) + 100 0.000 0.000 0.214 0.002 logger_connector.py:250(progress_bar_metrics) + 100 0.000 0.000 0.213 0.002 logger_connector.py:229(metrics) + 100 0.001 0.000 0.212 0.002 result.py:476(metrics) + 600 0.001 0.000 0.187 0.000 apply_func.py:113(convert_tensors_to_scalars) + 600 0.000 0.000 0.186 0.000 apply_func.py:23(apply_to_collection) + 600 0.000 0.000 0.185 0.000 apply_func.py:122(to_item) + 600 0.185 0.000 0.185 0.000 {method 'item' of 'torch._C.TensorBase' objects} + 100 0.001 0.000 0.050 0.001 std.py:1402(set_postfix) + 100 0.000 0.000 0.046 0.000 std.py:1325(refresh) + 100 0.000 0.000 0.044 0.000 std.py:1464(display) + 100 0.000 0.000 0.036 0.000 std.py:457(print_status) + 100 0.000 0.000 0.033 0.000 std.py:451(fp_write) + 200 0.000 0.000 0.032 0.000 utils.py:194(inner) + 100 0.001 0.000 0.025 0.000 iostream.py:592(flush) + 600 0.002 0.000 0.022 0.000 result.py:430(_get_cache) + 100 0.000 0.000 0.022 0.000 threading.py:604(wait) + 100 0.000 0.000 0.022 0.000 threading.py:288(wait) + 800 0.022 0.000 0.022 0.000 {method 'acquire' of '_thread.lock' objects} + 600 0.001 0.000 0.018 0.000 result.py:276(wrapped_func) + 600 0.013 0.000 0.016 0.000 result.py:246(compute) + 100 0.000 0.000 0.008 0.000 std.py:1150(__str__) + 100 0.001 0.000 0.008 0.000 iostream.py:655(write) + 300 0.001 0.000 0.007 0.000 iostream.py:259(schedule) + 100 0.000 0.000 0.006 0.000 iostream.py:577(_schedule_flush) + 300 0.006 0.000 0.006 0.000 socket.py:626(send) + 100 0.001 0.000 0.004 0.000 std.py:1446(format_dict) + 100 0.001 0.000 0.004 0.000 utils.py:333(_screen_shape_linux) + 100 0.000 0.000 0.003 0.000 utils.py:378(disp_len) + 100 0.001 0.000 0.003 0.000 std.py:464(format_meter) + 100 0.000 0.000 0.003 0.000 utils.py:374(_text_width) + 100 0.001 0.000 0.003 0.000 {built-in method builtins.sum} + 700 0.001 0.000 0.003 0.000 tqdm_progress.py:46(format_num) + 600 0.003 0.000 0.003 0.000 {method 'clone' of 'torch._C.TensorBase' objects} + 13700 0.002 0.000 0.002 0.000 utils.py:375() + 100 0.001 0.000 0.002 0.000 {built-in method fcntl.ioctl} + 700 0.001 0.000 0.002 0.000 std.py:419(format_num) + 300 0.000 0.000 0.001 0.000 trainer.py:1642(_results) + 600 0.000 0.000 0.001 0.000 trainer.py:1381(training) + 600 0.000 0.000 0.001 0.000 distributed.py:392(_distributed_is_initialized) + 600 0.000 0.000 0.001 0.000 result.py:64(should) + 600 0.001 0.000 0.001 0.000 enums.py:81(__eq__) + 100 0.000 0.000 0.001 0.000 std.py:102(acquire) + 600 0.001 0.000 0.001 0.000 result.py:90(_generate_sync_fn) + 300 0.000 0.000 0.001 0.000 trainer.py:1564(_active_loop) + 400 0.000 0.000 0.001 0.000 threading.py:1185(is_alive) + 100 0.000 0.000 0.001 0.000 utils.py:347() + 200 0.000 0.000 0.001 0.000 {method 'format' of 'str' objects} + 5500 0.000 0.000 0.001 0.000 {built-in method builtins.isinstance} + 13600 0.001 0.000 0.001 0.000 {built-in method unicodedata.east_asian_width} + 100 0.000 0.000 0.001 0.000 threading.py:555(__init__) + 100 0.001 0.000 0.001 0.000 {built-in method fromtimestamp} + 300 0.000 0.000 0.001 0.000 fit_loop.py:140(_results) + 100 0.000 0.000 0.001 0.000 progress_bar.py:210(get_standard_metrics) + 600 0.000 0.000 0.001 0.000 result.py:465(_forked_name) + 100 0.000 0.000 0.001 0.000 {method 'join' of 'str' objects} + 100 0.001 0.000 0.001 0.000 {method 'acquire' of '_multiprocessing.SemLock' objects} + 100 0.000 0.000 0.000 0.000 :674(__getitem__) + 600 0.000 0.000 0.000 0.000 distributed_c10d.py:973(is_initialized) + 600 0.000 0.000 0.000 0.000 imports.py:196(__bool__) + 600 0.000 0.000 0.000 0.000 {method 'detach' of 'torch._C.TensorBase' objects} + 700 0.000 0.000 0.000 0.000 result.py:463() + 100 0.000 0.000 0.000 0.000 threading.py:236(__init__) + 800 0.000 0.000 0.000 0.000 std.py:1428() + 100 0.000 0.000 0.000 0.000 std.py:106(release) + 100 0.000 0.000 0.000 0.000 std.py:400(format_interval) + 1200 0.000 0.000 0.000 0.000 enum.py:192(__get__) + 400 0.000 0.000 0.000 0.000 threading.py:1118(_wait_for_tstate_lock) + 2400 0.000 0.000 0.000 0.000 result.py:143(sync) + 600 0.000 0.000 0.000 0.000 result.py:294(__setattr__) + 600 0.000 0.000 0.000 0.000 __init__.py:9(is_available) + 600 0.000 0.000 0.000 0.000 distributed_c10d.py:588(WORLD) + 700 0.000 0.000 0.000 0.000 :117(__instancecheck__) + 600 0.000 0.000 0.000 0.000 imports.py:160(_check_available) + 600 0.000 0.000 0.000 0.000 result.py:158(forked_name) + 600 0.000 0.000 0.000 0.000 typing.py:349(inner) + 100 0.000 0.000 0.000 0.000 utilities.py:25(_version) + 100 0.000 0.000 0.000 0.000 {method 'sub' of 're.Pattern' objects} + 1400 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 100 0.000 0.000 0.000 0.000 std.py:186(__format__) + 200 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 100 0.000 0.000 0.000 0.000 utils.py:139(__getattr__) + 100 0.000 0.000 0.000 0.000 {method 'release' of '_multiprocessing.SemLock' objects} + 100 0.000 0.000 0.000 0.000 :756(encode) + 100 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1400 0.000 0.000 0.000 0.000 {method 'replace' of 'str' objects} + 100 0.000 0.000 0.000 0.000 iostream.py:505(parent_header) + 100 0.000 0.000 0.000 0.000 threading.py:1446(current_thread) + 100 0.000 0.000 0.000 0.000 std.py:153(__init__) + 100 0.000 0.000 0.000 0.000 iostream.py:364(fileno) + 2517 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 300 0.000 0.000 0.000 0.000 iostream.py:138(_event_pipe) + 100 0.000 0.000 0.000 0.000 iostream.py:550(_is_master_process) + 700 0.000 0.000 0.000 0.000 {built-in method _abc._abc_instancecheck} + 600 0.000 0.000 0.000 0.000 result.py:163(is_mean_reduction) + 200 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 1200 0.000 0.000 0.000 0.000 result.py:97(__call__) + 100 0.000 0.000 0.000 0.000 {built-in method builtins.sorted} + 100 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 700 0.000 0.000 0.000 0.000 {method 'strip' of 'str' objects} + 200 0.000 0.000 0.000 0.000 {built-in method _thread.allocate_lock} + 1200 0.000 0.000 0.000 0.000 result.py:60(should) + 100 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 400 0.000 0.000 0.000 0.000 threading.py:568(is_set) + 200 0.000 0.000 0.000 0.000 threading.py:1161(ident) + 600 0.000 0.000 0.000 0.000 metric.py:181(update_called) + 100 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 100 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.RLock' objects} + 1200 0.000 0.000 0.000 0.000 result.py:101(no_op) + 200 0.000 0.000 0.000 0.000 tqdm_progress.py:121(train_progress_bar) + 1200 0.000 0.000 0.000 0.000 enum.py:1243(value) + 600 0.000 0.000 0.000 0.000 {method 'numel' of 'torch._C.TensorBase' objects} + 100 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1200 0.000 0.000 0.000 0.000 {method 'lower' of 'str' objects} + 600 0.000 0.000 0.000 0.000 distributed_c10d.py:460(default_pg) + 100 0.000 0.000 0.000 0.000 {method 'encode' of 'str' objects} + 100 0.000 0.000 0.000 0.000 result.py:461(valid_items) + 100 0.000 0.000 0.000 0.000 {method 'get' of '_contextvars.ContextVar' objects} + 100 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 100 0.000 0.000 0.000 0.000 utils.py:108(__init__) + 300 0.000 0.000 0.000 0.000 {method 'keys' of 'dict' objects} + 600 0.000 0.000 0.000 0.000 result.py:154(forked) + 100 0.000 0.000 0.000 0.000 {built-in method time.time} + 100 0.000 0.000 0.000 0.000 {method 'write' of '_io.StringIO' objects} + 100 0.000 0.000 0.000 0.000 threading.py:276(_acquire_restore) + 100 0.000 0.000 0.000 0.000 threading.py:267(__exit__) + 100 0.000 0.000 0.000 0.000 std.py:231(__call__) + 100 0.000 0.000 0.000 0.000 {built-in method builtins.abs} + 400 0.000 0.000 0.000 0.000 {method 'append' of 'collections.deque' objects} + 600 0.000 0.000 0.000 0.000 result.py:80(group) + 100 0.000 0.000 0.000 0.000 threading.py:264(__enter__) + 600 0.000 0.000 0.000 0.000 result.py:70(op) + 100 0.000 0.000 0.000 0.000 threading.py:279(_is_owned) + 100 0.000 0.000 0.000 0.000 {built-in method posix.getpid} + 100 0.000 0.000 0.000 0.000 threading.py:273(_release_save) + 300 0.000 0.000 0.000 0.000 {built-in method builtins.divmod} + 200 0.000 0.000 0.000 0.000 trainer.py:1590(loggers) + 100 0.000 0.000 0.000 0.000 std.py:167(colour) + 100 0.000 0.000 0.000 0.000 {built-in method _thread.get_ident} + 100 0.000 0.000 0.000 0.000 utils.py:112(__format__) + 100 0.000 0.000 0.000 0.000 tensorboard.py:124(version) + 200 0.000 0.000 0.000 0.000 {method 'keys' of 'collections.OrderedDict' objects} + 100 0.000 0.000 0.000 0.000 {method '__enter__' of '_thread.lock' objects} + 100 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.RLock' objects} + 200 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects} + 100 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 100 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 100 0.000 0.000 0.000 0.000 std.py:163(colour) + 3/1 0.000 0.000 0.000 0.000 :121(__subclasscheck__) + 3/1 0.000 0.000 0.000 0.000 {built-in method _abc._abc_subclasscheck} + 100 0.000 0.000 0.000 0.000 {method 'release' of '_thread.RLock' objects} + 100 0.000 0.000 0.000 0.000 {method 'release' of '_thread.lock' objects} + 100 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.lock' objects} + 100 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 100 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_train_epoch_end + 700 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 100 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 100 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 100 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 100 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 100 0.000 0.000 0.000 0.000 hooks.py:214(on_train_epoch_end) + 100 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 100 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]ProgressBar.on_train_end + 467 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 tqdm_progress.py:283(on_train_end) + 1 0.000 0.000 0.000 0.000 std.py:1265(close) + 1 0.000 0.000 0.000 0.000 std.py:1464(display) + 4 0.000 0.000 0.000 0.000 utils.py:194(inner) + 1 0.000 0.000 0.000 0.000 std.py:457(print_status) + 1 0.000 0.000 0.000 0.000 std.py:451(fp_write) + 1 0.000 0.000 0.000 0.000 iostream.py:592(flush) + 1 0.000 0.000 0.000 0.000 threading.py:604(wait) + 1 0.000 0.000 0.000 0.000 threading.py:288(wait) + 9 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.lock' objects} + 3 0.000 0.000 0.000 0.000 iostream.py:655(write) + 1 0.000 0.000 0.000 0.000 std.py:1150(__str__) + 2 0.000 0.000 0.000 0.000 std.py:1286(fp_write) + 1 0.000 0.000 0.000 0.000 std.py:686(_decr_instances) + 4 0.000 0.000 0.000 0.000 iostream.py:259(schedule) + 1 0.000 0.000 0.000 0.000 utils.py:378(disp_len) + 3 0.000 0.000 0.000 0.000 iostream.py:577(_schedule_flush) + 1 0.000 0.000 0.000 0.000 utils.py:374(_text_width) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.sum} + 1 0.000 0.000 0.000 0.000 std.py:1446(format_dict) + 1 0.000 0.000 0.000 0.000 std.py:464(format_meter) + 4 0.000 0.000 0.000 0.000 socket.py:626(send) + 137 0.000 0.000 0.000 0.000 utils.py:375() + 1 0.000 0.000 0.000 0.000 utils.py:333(_screen_shape_linux) + 1 0.000 0.000 0.000 0.000 _weakrefset.py:110(remove) + 1 0.000 0.000 0.000 0.000 {built-in method fcntl.ioctl} + 2 0.000 0.000 0.000 0.000 _weakrefset.py:63(__iter__) + 2 0.000 0.000 0.000 0.000 std.py:110(__enter__) + 2 0.000 0.000 0.000 0.000 std.py:102(acquire) + 5 0.000 0.000 0.000 0.000 threading.py:1185(is_alive) + 2 0.000 0.000 0.000 0.000 {method 'format' of 'str' objects} + 136 0.000 0.000 0.000 0.000 {built-in method unicodedata.east_asian_width} + 2 0.000 0.000 0.000 0.000 {method 'remove' of 'set' objects} + 1 0.000 0.000 0.000 0.000 utils.py:347() + 2 0.000 0.000 0.000 0.000 std.py:113(__exit__) + 1 0.000 0.000 0.000 0.000 threading.py:555(__init__) + 1 0.000 0.000 0.000 0.000 :674(__getitem__) + 2 0.000 0.000 0.000 0.000 std.py:106(release) + 1 0.000 0.000 0.000 0.000 std.py:400(format_interval) + 1 0.000 0.000 0.000 0.000 _weakrefset.py:27(__exit__) + 5 0.000 0.000 0.000 0.000 threading.py:1118(_wait_for_tstate_lock) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 threading.py:236(__init__) + 3 0.000 0.000 0.000 0.000 iostream.py:505(parent_header) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 3 0.000 0.000 0.000 0.000 iostream.py:550(_is_master_process) + 1 0.000 0.000 0.000 0.000 :756(encode) + 1 0.000 0.000 0.000 0.000 _weakrefset.py:21(__enter__) + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 2 0.000 0.000 0.000 0.000 {method 'acquire' of '_multiprocessing.SemLock' objects} + 1 0.000 0.000 0.000 0.000 std.py:186(__format__) + 1 0.000 0.000 0.000 0.000 utils.py:125(__eq__) + 1 0.000 0.000 0.000 0.000 _weakrefset.py:53(_commit_removals) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {built-in method fromtimestamp} + 1 0.000 0.000 0.000 0.000 std.py:153(__init__) + 1 0.000 0.000 0.000 0.000 {method 'sub' of 're.Pattern' objects} + 1 0.000 0.000 0.000 0.000 std.py:708() + 1 0.000 0.000 0.000 0.000 threading.py:1446(current_thread) + 4 0.000 0.000 0.000 0.000 iostream.py:138(_event_pipe) + 2 0.000 0.000 0.000 0.000 {method 'release' of '_multiprocessing.SemLock' objects} + 2 0.000 0.000 0.000 0.000 std.py:1153(_comparable) + 2 0.000 0.000 0.000 0.000 threading.py:1161(ident) + 4 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr} + 1 0.000 0.000 0.000 0.000 std.py:1157(__hash__) + 5 0.000 0.000 0.000 0.000 {built-in method builtins.getattr} + 1 0.000 0.000 0.000 0.000 utils.py:139(__getattr__) + 1 0.000 0.000 0.000 0.000 threading.py:264(__enter__) + 1 0.000 0.000 0.000 0.000 threading.py:267(__exit__) + 1 0.000 0.000 0.000 0.000 iostream.py:364(fileno) + 1 0.000 0.000 0.000 0.000 _weakrefset.py:17(__init__) + 1 0.000 0.000 0.000 0.000 threading.py:273(_release_save) + 1 0.000 0.000 0.000 0.000 {method 'encode' of 'str' objects} + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 5 0.000 0.000 0.000 0.000 threading.py:568(is_set) + 1 0.000 0.000 0.000 0.000 {method 'pop' of 'list' objects} + 2 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.RLock' objects} + 1 0.000 0.000 0.000 0.000 threading.py:279(_is_owned) + 2 0.000 0.000 0.000 0.000 {built-in method _thread.allocate_lock} + 1 0.000 0.000 0.000 0.000 threading.py:276(_acquire_restore) + 3 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.RLock' objects} + 4 0.000 0.000 0.000 0.000 {built-in method builtins.len} + 5 0.000 0.000 0.000 0.000 {method 'append' of 'collections.deque' objects} + 4 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance} + 1 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects} + 3 0.000 0.000 0.000 0.000 {method 'get' of '_contextvars.ContextVar' objects} + 3 0.000 0.000 0.000 0.000 {built-in method builtins.divmod} + 3 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {built-in method builtins.max} + 3 0.000 0.000 0.000 0.000 {method 'write' of '_io.StringIO' objects} + 1 0.000 0.000 0.000 0.000 utils.py:112(__format__) + 3 0.000 0.000 0.000 0.000 {built-in method builtins.abs} + 3 0.000 0.000 0.000 0.000 {built-in method posix.getpid} + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 1 0.000 0.000 0.000 0.000 utils.py:108(__init__) + 2 0.000 0.000 0.000 0.000 {method 'release' of '_thread.RLock' objects} + 1 0.000 0.000 0.000 0.000 {built-in method time.time} + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {built-in method builtins.id} + 1 0.000 0.000 0.000 0.000 {method '__enter__' of '_thread.lock' objects} + 1 0.000 0.000 0.000 0.000 std.py:167(colour) + 1 0.000 0.000 0.000 0.000 tqdm_progress.py:121(train_progress_bar) + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 {built-in method _thread.get_ident} + 1 0.000 0.000 0.000 0.000 {method '__exit__' of '_thread.lock' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 std.py:163(colour) + 1 0.000 0.000 0.000 0.000 {method 'add' of 'set' objects} + 1 0.000 0.000 0.000 0.000 {method 'release' of '_thread.lock' objects} + 1 0.000 0.000 0.000 0.000 std.py:1301() + + + +Profile stats for: [LightningModule]TimeNet.on_train_end + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:47(on_train_end) + + + +Profile stats for: [Strategy]SingleDeviceStrategy.on_train_end + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 strategy.py:561(on_train_end) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]ProgressBar.on_fit_end + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 callback.py:67(on_fit_end) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.on_fit_end + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:37(on_fit_end) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [Callback]ProgressBar.teardown + 10 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 trainer.py:1178(lightning_module) + 1 0.000 0.000 0.000 0.000 trainer.py:1125(strategy) + 1 0.000 0.000 0.000 0.000 callback.py:61(teardown) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + 1 0.000 0.000 0.000 0.000 strategy.py:360(lightning_module) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + + + +Profile stats for: [LightningModule]TimeNet.teardown + 7 function calls in 0.000 seconds + + Ordered by: cumulative time + + ncalls tottime percall cumtime percall filename:lineno(function) + 1 0.000 0.000 0.000 0.000 contextlib.py:141(__exit__) + 1 0.000 0.000 0.000 0.000 {built-in method builtins.next} + 1 0.000 0.000 0.000 0.000 profiler.py:55(profile) + 1 0.000 0.000 0.000 0.000 advanced.py:71(stop) + 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} + 1 0.000 0.000 0.000 0.000 hooks.py:447(teardown) + 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects} + + diff --git a/docs/source/how-to-guides/feature-guides/profiling_and_logging.ipynb b/docs/source/how-to-guides/feature-guides/profiling_and_logging.ipynb new file mode 100644 index 000000000..98457c2ce --- /dev/null +++ b/docs/source/how-to-guides/feature-guides/profiling_and_logging.ipynb @@ -0,0 +1,308 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tutorial 11: Profiling and Logging" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tutorial will guide you through setting up profiling and logging in your NeuralProphet models using PyTorch's Profiler and TensorBoard Logger. Profiling helps you understand where your model spends time and memory, and logging keeps track of these metrics for later analysis." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Profiling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using the Simple Profiler" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Simple Profiler is a lightweight and straightforward tool that tracks the execution time of different sections of your model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pytorch_lightning.profilers import SimpleProfiler\n", + "\n", + "# Configure Simple Profiler\n", + "trainer_config = {\"profiler\": SimpleProfiler(dirpath=\"./pl_profiling\", filename=\"simple\")}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Integrating the Simple Profiler into the Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from neuralprophet import NeuralProphet, set_log_level\n", + "\n", + "# Load the dataset from the CSV file using pandas\n", + "df = pd.read_csv(\"https://github.com/ourownstory/neuralprophet-data/raw/main/kaggle-energy/datasets/tutorial01.csv\")\n", + "\n", + "# Disable logging messages unless there is an error\n", + "set_log_level(\"ERROR\")\n", + "\n", + "# Model and prediction\n", + "m = NeuralProphet(trainer_config=trainer_config)\n", + "m.fit(df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using the Advanced Profiler" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Advanced Profiler offers more detailed insights into your model's performance, including function-level statistics and memory usage." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pytorch_lightning.profilers import AdvancedProfiler\n", + "\n", + "# Configure Advanced Profiler\n", + "trainer_config = {\"profiler\": AdvancedProfiler(dirpath=\"./pl_profiling\", filename=\"advanced\")}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Integrating the Advanced Profiler into the Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from neuralprophet import NeuralProphet, set_log_level\n", + "\n", + "# Load the dataset from the CSV file using pandas\n", + "df = pd.read_csv(\"https://github.com/ourownstory/neuralprophet-data/raw/main/kaggle-energy/datasets/tutorial01.csv\")\n", + "\n", + "# Disable logging messages unless there is an error\n", + "set_log_level(\"ERROR\")\n", + "\n", + "# Model and prediction\n", + "m = NeuralProphet(trainer_config=trainer_config)\n", + "m.fit(df, learning_rate=0.1, epochs=10, batch_size=128, progress=False, minimal=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "You can check the profiling reports in the generated text files under ``` ./pl_profiling ```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Logging" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setting Up TensorBoard Logger" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pytorch_lightning.loggers import TensorBoardLogger\n", + "\n", + "# Configure TensorBoard logger\n", + "trainer_config = {\"logger\": TensorBoardLogger(\"tb_logs\", name=\"NeuralProphet\")}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Integrating Logging into the Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from neuralprophet import NeuralProphet\n", + "\n", + "# Load the dataset from the CSV file using pandas\n", + "df = pd.read_csv(\"https://github.com/ourownstory/neuralprophet-data/raw/main/kaggle-energy/datasets/tutorial01.csv\")\n", + "\n", + "\n", + "# Model and prediction\n", + "m = NeuralProphet()\n", + "metrics = m.fit(df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing Logs in TensorBoard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "bat" + } + }, + "outputs": [], + "source": [ + "tensorboard --logdir tb_logs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Open the provided URL in your browser, and you'll be able to explore various metrics like training loss, validation loss, and more, all tracked during the training process." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Integrating Profiling with TensorBoard Logging\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, make sure to install ```torch-tb-profiler```. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "from pytorch_lightning.loggers import TensorBoardLogger\n", + "\n", + "trainer_config = {}\n", + "\n", + "# Configure TensorBoard logger\n", + "trainer_config[\"logger\"] = TensorBoardLogger(\"tb_logs\", name=\"NeuralProphet\")\n", + "\n", + "# Integrate profiler with logging\n", + "trainer_config[\"profiler\"] = torch.profiler.profile(\n", + " on_trace_ready=torch.profiler.tensorboard_trace_handler(\"tb_logs/profiler0\"),\n", + " record_shapes=True,\n", + " profile_memory=True,\n", + ")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from neuralprophet import NeuralProphet\n", + "from neuralprophet import set_random_seed\n", + "\n", + "set_random_seed(42)\n", + "\n", + "# Load the dataset from the CSV file using pandas\n", + "df = pd.read_csv(\"https://github.com/ourownstory/neuralprophet-data/raw/main/kaggle-energy/datasets/tutorial01.csv\")\n", + "\n", + "# Model and prediction\n", + "m = NeuralProphet()\n", + "\n", + "df_train, df_val = m.split_df(df, valid_p=0.2)\n", + "\n", + "# Set the deterministic flag to True\n", + "metrics = m.fit(df_train, validation_df=df_val, progress=None, deterministic=True)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.7 ('.venv': venv)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "92c9cff0281419e73896333b85e681aea9374fd743c51074843eeada7c3f6baf" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/how-to-guides/feature-guides/prophet_to_torch_prophet.ipynb b/docs/source/how-to-guides/feature-guides/prophet_to_torch_prophet.ipynb index 20827a015..bec2c7ff4 100644 --- a/docs/source/how-to-guides/feature-guides/prophet_to_torch_prophet.ipynb +++ b/docs/source/how-to-guides/feature-guides/prophet_to_torch_prophet.ipynb @@ -240,11 +240,11 @@ "# Set loggers to ERROR level\n", "import logging\n", "import warnings\n", + "from neuralprophet import set_log_level\n", "\n", "logging.getLogger(\"prophet\").setLevel(logging.ERROR)\n", "warnings.filterwarnings(\"ignore\")\n", "\n", - "from neuralprophet import set_log_level\n", "\n", "set_log_level(\"ERROR\")" ] diff --git a/docs/source/how-to-guides/feature-guides/uncertainty_quantification.ipynb b/docs/source/how-to-guides/feature-guides/uncertainty_quantification.ipynb index f5826a066..e542daf56 100644 --- a/docs/source/how-to-guides/feature-guides/uncertainty_quantification.ipynb +++ b/docs/source/how-to-guides/feature-guides/uncertainty_quantification.ipynb @@ -48,9 +48,8 @@ "metadata": {}, "outputs": [], "source": [ - "import numpy as np\n", "import pandas as pd\n", - "from neuralprophet import NeuralProphet, uncertainty_evaluate, set_log_level, set_random_seed\n", + "from neuralprophet import NeuralProphet, uncertainty_evaluate, set_random_seed\n", "\n", "data_location = \"http://raw.githubusercontent.com/ourownstory/neuralprophet-data/main/datasets/\"\n", "df = pd.read_csv(data_location + \"energy/SF_hospital_load.csv\")" diff --git a/docs/source/how-to-guides/index.rst b/docs/source/how-to-guides/index.rst index 428810e93..f4228d187 100644 --- a/docs/source/how-to-guides/index.rst +++ b/docs/source/how-to-guides/index.rst @@ -21,6 +21,8 @@ Feature guides MLflow Integration Live Plotting during Training Network Architecture Visualization + Profiling and Logging + Application examples -------------------- diff --git a/tests/metrics/debug-energy-price-daily.ipynb b/tests/metrics/debug-energy-price-daily.ipynb index e94b8d756..7ddb1071c 100644 --- a/tests/metrics/debug-energy-price-daily.ipynb +++ b/tests/metrics/debug-energy-price-daily.ipynb @@ -7,15 +7,12 @@ "outputs": [], "source": [ "import os\n", - "import pathlib\n", - "\n", - "import numpy as np\n", "import pandas as pd\n", "import plotly.graph_objects as go\n", "from plotly.subplots import make_subplots\n", "from plotly_resampler import unregister_plotly_resampler\n", "\n", - "from neuralprophet import NeuralProphet, set_random_seed" + "from neuralprophet import NeuralProphet" ] }, { diff --git a/tests/metrics/debug-energy-price-hourly.ipynb b/tests/metrics/debug-energy-price-hourly.ipynb index 14a09c93e..70ce9d1ea 100644 --- a/tests/metrics/debug-energy-price-hourly.ipynb +++ b/tests/metrics/debug-energy-price-hourly.ipynb @@ -7,7 +7,6 @@ "outputs": [], "source": [ "import os\n", - "import pathlib\n", "import torch\n", "\n", "import numpy as np\n", @@ -16,7 +15,7 @@ "from plotly.subplots import make_subplots\n", "from plotly_resampler import unregister_plotly_resampler\n", "\n", - "from neuralprophet import NeuralProphet, set_random_seed" + "from neuralprophet import NeuralProphet" ] }, { diff --git a/tests/metrics/debug-yosemite.ipynb b/tests/metrics/debug-yosemite.ipynb index a7a2b0e56..9bd584dae 100644 --- a/tests/metrics/debug-yosemite.ipynb +++ b/tests/metrics/debug-yosemite.ipynb @@ -7,7 +7,6 @@ "outputs": [], "source": [ "import os\n", - "import pathlib\n", "import time\n", "\n", "import numpy as np\n",