-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExample.py
49 lines (36 loc) · 900 Bytes
/
Example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import learning
import gym
import matplotlib.pyplot as plt
env = gym.make('CartPole-v0')
states = [0,0,0,0]
actions = [0,0]
maximum = [2.5, 4, 0.8, 4]
minimum = [-2.5, -4, -0.8,-4]
episodes = 10000
Intents = []
cart = learning.Agent(
states = states,
sampleSize = [10,1,30,30],
posibleActions = actions,
expectedReturn = 205,
gamma = 1,
batchSize= 1,
alpha = "auto",
epsilon= 0.3,
learningTime = 202,
continues = True,
maximum = maximum,
minimum = minimum
)
while (not(cart.ready)):
observation = env.reset()
episodeReward = 0
cart.setState(observation)
for step in range(200):
action = cart.decide()
observation, reward, done, info = env.step(action)
episodeReward += reward
cart.learn(observation,action,reward)
if done:
cart.update(episodeReward)
break