-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning.py
298 lines (229 loc) · 14.6 KB
/
learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from sklearn.gaussian_process import GaussianProcessRegressor
import sklearn.gaussian_process.kernels as Kernels
import matplotlib.pyplot as plt
import numpy as np
import os.path
import json
import codecs
def lastProm(array, amount):
suma = 0
last = len(array)
if last == 0:
return 0
if last < amount:
for x in array:
suma += x
return suma/(last)
for x in range(amount):
suma += array[last-(x+1)]
return suma/amount
def product(*args, repeat=1):
# product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
# product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
class Agent:
#By default the main 3 hyperparameters will be set as "auto".
def __init__(self, learningTime, states,posibleActions,sampleSize = [],epsilon = "auto",alpha = "auto",gamma = "auto", epsilonDecay = 1,
alphaDecay = 1, expectedReturn = 0, batchSize=3, continues = False, minimum = [], maximum = []):
#autoLearners -> Array with every parameter set to "auto".
self.autoLearners = []
#record -> Memory for the achived reward in every episode for one combination.
self.record = []
#metaRecord -> Memory for the score of every Combination.
self.metaRecord = []
#batch -> Here I will record several learning attempts in order to get a proper average.
self.batch = {'size': batchSize,'attempts':[]}
#How much time do you think is enough for the learning task given (This hyperparameter should be errased).
self.learningTime = learningTime
#Array with one zero for each state the Agent should perceive.
self.state = states
#Array with one zero for each action the Agent can take in each state
self.actions = posibleActions
#Array with each value been the amount of detail the according state should be break into.
self.sampleSize = sampleSize
#I process the selection of hyperparameter to check for auto requests.
# hyperparameters -> Epsilon, Alpha, Gamma.
self.hyperparameters, self.GPR = self.setAutos({'epsilon':epsilon, 'alpha':alpha, 'gamma':gamma})
#I keep instances of each hyperparameter so I can give them variations in the learning process while keeping the original value.
self.epsilon = self.hyperparameters['epsilon']
self.alpha = self.hyperparameters['alpha']
self.gamma = self.hyperparameters['gamma']
#I take the epsilon and alpha decay as the amount they are going to grow. (For example: 1.3 times larger, or 0.5 times the original value).
self.epsilonDecay = epsilonDecay
self.alphaDecay = alphaDecay
#I initialize the policy with all zeros.
self.policy = self.initializePolicy(states,posibleActions,sampleSize)
#Check if the enviroment is continues.
self.continues = continues
#Take the minimus and maximum of each state-space.
self.minimum = minimum
self.maximum = maximum
#What reward does the Agent has to achive in order to take the learning as resolved.
self.expectedReturn = expectedReturn
#True if the learning process is over.
self.ready = False
def setAutos(self, parameters):
for parameter, value in parameters.items():
#I check every parameter given for the "auto" value.
if value == "auto":
#If the parameter has the "auto" value, then I give it a random value to start with.
parameters[parameter] = np.random.random()
#I add the parameters to the list of autoLearners of the class Agent.
#I have it this way, in order to differentiate the hyperparameters I automattically choose.
self.autoLearners.append({'name': parameter, 'value' : parameters[parameter], 'boundries' : [0,1]})
kernel = 1.0 * Kernels.RBF() + Kernels.WhiteKernel(noise_level=2)
#I set the GaussianRegressor here just for convenience. I need to check the reason for each value.
GaussianRegressor = GaussianProcessRegressor(
kernel=kernel,
random_state=1,
normalize_y=False,
alpha=0,
#Not sure how this optimizer works yet.
n_restarts_optimizer=10)
return parameters, GaussianRegressor
def decide(self, greedy = False):
if (greedy):
return np.amax(self.policy[tuple(self.state)])
inputs = self.policy[tuple(self.state)]
try:
probability0 = np.exp((inputs-np.amax(inputs))*self.epsilon) / float(sum(np.exp((inputs-np.amax(inputs))*self.epsilon)))
probability1 = np.exp((inputs-np.amax(inputs))*self.epsilon) / float(sum(np.exp((inputs-np.amax(inputs))*self.epsilon)))
probability1.sort()
except:
print ("The epsilon value is: " + str(self.epsilon))
exit()
chance = 0
posibility = np.random.random()
for action in probability1:
chance += action
if chance > posibility:
return np.where(probability0 == action)[0][0]
def update(self,reward):
#Function called every time an episode ends.
#What I have to do here is:
#->Record the reward in the "record" attribute. I use the first record when updating alpha and epsilon,
# so this has to be done before the alpha and epsilon update.
self.record.append(reward)
#->Update alpha and epsilon acording to the given decay
self.alpha = self.hyperparameters['alpha'] * self.alphaDecay * (1/pow(self.alphaDecay, abs(lastProm(self.record, 200) - self.expectedReturn) / abs(self.record[0] - self.expectedReturn)))
self.epsilon = self.hyperparameters['epsilon'] * self.epsilonDecay * (1/pow(self.epsilonDecay, abs(lastProm(self.record, 200) - self.expectedReturn) / abs(self.record[0] - self.expectedReturn)))
#->Give the user feedback of the learning process through the console
print ("Update: " + str(len(self.record)) + " | " + str(self.hyperparameters) +" | " +"Score: " + str(lastProm(self.record,int(self.learningTime/10))),end="\r")
#->If the learning time is past the 10% of the given by the user:
if (len(self.record) > (self.learningTime/10) and len(self.record) < (self.learningTime)):
#->Then i check if average of the last 10 scores is under the diagonal line from 0% to 100% of the expectedReturn in the estimated learninTime period.
if (lastProm(self.record,int(self.learningTime/10)) < ((len(self.record)/self.learningTime)*self.expectedReturn)):
#->I set as failure and tell the user the score achived.
# print ("\nFailure in " + str(len(self.record)) +": ")
# print ("Score achived: " + str(lastProm(self.record,int(self.learningTime/10))))
# print ("Changing the configuration...")
#REMEMBER#
#I have to use the same configuration of hyperparameters batchSize times,
# in order to get a good enough aproximation of the score those parameters give.
self.batch['attempts'].append(lastProm(self.record,int(self.learningTime/10)))
# print (self.batch['attempts']) #Just for debuging
#As a default I choose the next sampling point as the same I allready tried before, in case the batch is not full.
nextConfig = {parameter['name'] : parameter['value'] for parameter in self.autoLearners}
if (len(self.batch['attempts']) % self.batch['size'] == 0):
#If the batch is full, then I have to fit the GaussianProcess with the point:
# X = Vector with the Hyperparameter configuration. -> for record in self.metaRecord: record['configuration']
# Y = Average score achived in the batch. -> for record in self.metaRecord: record['score']
#Default the GPR with a random value selection
nextConfig = {parameter['name'] : np.random.random() for parameter in self.autoLearners}
#I store the configuration with it's average score from the batch.
self.metaRecord.append(self.getMetaData())
print ("The last meta record was: " + str(self.metaRecord[len(self.metaRecord)-1])) # Just for debuging
#Check if self.metaRecord has more than 2 samples to start using the self.GPR
if (len(self.metaRecord) > 2):
#Get the data to fit the GPR and then fit it
print ("Fitting data")
fitting_X_vector = np.array([[config['configuration'][parameter['name']] for parameter in self.autoLearners] for config in self.metaRecord])
fitting_Y_vector = np.array([config['score'] for config in self.metaRecord])
self.GPR.fit(fitting_X_vector,fitting_Y_vector)
#The space has to be given as an array of points such as: [X Y Z] in case of 3 parameter estimation
prediction_X_space = np.array(list(product([i/100 for i in range(100)], repeat=len(self.autoLearners))))
predicted_mean, uncertainty = self.GPR.predict(prediction_X_space, return_std=True)
"""
Here i should use the gaussian process and an aquisition function to suggest a new point to sample.
Let's first assume that there's only one auto hyperparamter...
Probability of improvement -> pi(x), as the probability of f(x) been greater than the current known bigest value.
f -> objective function.
f*-> bigest known value. => np.amax(fitting_Y_vector)[0]
p -> prediction of f. => predicted_mean
u -> uncertainty. => uncertainty
pi(x) = P(f(x) > f*) ~ [p(x) + u(x)] - f* + e {'e' is for aproximation}
"""
ProbabilityOfImprovement = (predicted_mean + uncertainty) - np.amax(fitting_Y_vector)
ProbabilityOfImprovement[ProbabilityOfImprovement < 0] = 0
if len(self.metaRecord)%10 == 0:
plt.plot(ProbabilityOfImprovement,'g')
plt.plot(predicted_mean, 'b')
plt.fill_between([i for i in range(0,100)],predicted_mean+uncertainty,predicted_mean-uncertainty,color="#b3e8ff")
plt.scatter([[config['configuration']['alpha']*100] for config in self.metaRecord],[config['score'] for config in self.metaRecord])
plt.show()
# nextConfig = {'alpha' : np.random.random()}
# if (nextConfig['epsilon'] <= 0) : nextConfig['epsilon'] = 0.01
# Let's try now to be more generic...
# nextConfig = {parameter['name'] : np.where(np.amax) for parameter in self.autoLearners}
otherConfig = {parameter['name'] : np.where(np.amax) for parameter in self.autoLearners}
print (otherConfig)
self.reset(nextConfig)
if self.record.__len__() > self.learningTime:
self.endLearning()
def getMetaData(self):
parameters = {}
parameters['configuration'] = {j['name'] : j['value'] for j in self.autoLearners}
parameters['score'] = lastProm(self.batch['attempts'],self.batch['size'])
return parameters
def learn(self, newState, actionTaken, reward):
if self.continues:
newStatef = self.discretize(newState)
fullState = self.state
fullState.append(actionTaken)
old_value = self.policy[tuple(fullState)]
new_value = (1 - self.alpha) * old_value + self.alpha * (reward + self.gamma*(max(self.policy[tuple(newStatef)])))
self.policy[tuple(fullState)] = new_value
self.setState(newState)
def initializePolicy(self,states,actions,sampleSize):
array = []
for state in range(states.__len__()):
array.append(sampleSize[state])
array.append(actions.__len__())
policy = np.zeros(array)
return policy
def discretize(self, states):
j = -1
discreteState = []
for state in states:
j += 1
increment = (abs(self.minimum[j])+self.maximum[j])/self.sampleSize[j]
for i in range(0, self.sampleSize[j]):
if state < increment*(i+1) + self.minimum[j]:
discreteState.append(i)
break
return discreteState
def setState(self,state):
if self.continues :
self.state = self.discretize(state)
if not(self.continues):
self.state = state
def reset(self,newParameters):
for parameter in self.autoLearners:
self.hyperparameters[parameter['name']] = newParameters[parameter['name']]
parameter['value'] = newParameters[parameter['name']]
self.epsilon = self.hyperparameters['epsilon']
self.alpha = self.hyperparameters['alpha']
self.gamma = self.hyperparameters['gamma']
self.record = []
self.policy = self.initializePolicy(self.state,self.actions,self.sampleSize)
def endLearning(self):
jsonPolicy = self.policy.tolist() # nested lists with same data, indices
file_path = "policy"
json.dump(jsonPolicy, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
self.ready = True
print ("\nThe learning process was succesfull. The policy was store under in the file named 'policy'")