-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathGreatestCommonDivisor.java
59 lines (54 loc) · 1.89 KB
/
GreatestCommonDivisor.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
package com.jwetherell.algorithms.mathematics;
/**
* In mathematics, the greatest common divisor (gcd) of two or more integers, when at least one of them is not
* zero, is the largest positive integer that is a divisor of both numbers.
* <p>
* @see <a href="https://en.wikipedia.org/wiki/Greatest_common_divisor">Greatest Common Divisor (Wikipedia)</a>
* <br>
* @author Szymon Stankiewicz <[email protected]>
* @author Justin Wetherell <[email protected]>
*/
public class GreatestCommonDivisor {
/**
* Calculate greatest common divisor of two numbers using recursion.
* <p>
* Time complexity O(log(a+b))
* <br>
* @param a Long integer
* @param b Long integer
* @return greatest common divisor of a and b
*/
public static long gcdUsingRecursion(long a, long b) {
a = Math.abs(a);
b = Math.abs(b);
return a == 0 ? b : gcdUsingRecursion(b%a, a);
}
/**
* A much more efficient method is the Euclidean algorithm, which uses a division algorithm such as long division
* in combination with the observation that the gcd of two numbers also divides their difference.
* <p>
* @see <a href="https://en.wikipedia.org/wiki/Greatest_common_divisor#Using_Euclid.27s_algorithm">Euclidean Algorithm (Wikipedia)</a>
*/
public static final long gcdUsingEuclides(long x, long y) {
long greater = x;
long smaller = y;
if (y > x) {
greater = y;
smaller = x;
}
long result = 0;
while (true) {
if (smaller == greater) {
result = smaller; // smaller == greater
break;
}
greater -= smaller;
if (smaller > greater) {
long temp = smaller;
smaller = greater;
greater = temp;
}
}
return result;
}
}