-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
59 lines (45 loc) · 2.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import pytorch_lightning as pl
from torch.utils.data import DataLoader
import os
from pytorch_lightning.loggers import WandbLogger
from utils.data import load_yaml
from utils.data import get_wandb_ckpt
import hydra
from pytorch_lightning import LightningModule
config = load_yaml('configs/config.yaml')
def set_wandb_vars(tmp_dir=config['wandb_tmp_dir']):
environment_variables = ['WANDB_DIR', 'WANDB_CACHE_DIR', 'WANDB_CONFIG_DIR', 'WANDB_DATA_DIR']
for variable in environment_variables:
os.environ[variable] = tmp_dir
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath=config['checkpoint_dirpath'],
monitor='val/loss',
filename='model-{epoch:02d}-{val_loss:.2f}',
save_top_k=2,
mode='min',
save_last=True,
)
def dataloaders(batch_size: int, train_dataset, val_dataset, collate_fn, num_workers=64, pin_memory=True):
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn, num_workers=num_workers, drop_last=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn, num_workers=num_workers,drop_last=True)
return train_loader, val_dataloader
@hydra.main(version_base="1.3", config_path="configs", config_name=None)
def train(cfg):
print(f"Instantiating model <{cfg.model._target_}>")
model: LightningModule = hydra.utils.instantiate(cfg.model)
train_dataset = hydra.utils.instantiate(cfg.train_dataset)
val_dataset = hydra.utils.instantiate(cfg.val_dataset)
collate_fn = hydra.utils.instantiate(cfg.collate_fn)
train_loader, val_dataloader = dataloaders(cfg.batch_size, train_dataset, val_dataset, collate_fn)
set_wandb_vars()
wandb_logger = WandbLogger(name=cfg.run_name, project='contrastive-neutrino2', log_model='all')
if cfg.wandb_checkpoint != 0:
checkpoint = get_wandb_ckpt(cfg.wandb_checkpoint)
else:
checkpoint = None
trainer = pl.Trainer(accelerator='gpu', gpus=cfg.num_of_gpus, max_epochs=800,
limit_train_batches=cfg.limit_train_batches, callbacks=[checkpoint_callback],
logger=wandb_logger, log_every_n_steps=5)
trainer.fit(model, train_loader, val_dataloader, ckpt_path=checkpoint)
if __name__ == '__main__':
train()