-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreweight.py
43 lines (34 loc) · 1.42 KB
/
reweight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import joblib
import warnings
from tqdm import tqdm
from utils.funcs import rootfile_to_array, load_config, load_files
from functools import partial
import pandas as pd
import fire
def predict_weights(config, filenames, model):
"""
Predict weights for a list of nominal filenames using a trained model
Args:
filenames (list): List of filenames to predict weights for
model (sklearn model): Trained model to use for prediction
Returns:
weights (np.array): Array of weights
"""
nominal = load_files(filenames, config.reweight_variables_names)
probas = model.predict_proba(nominal)
weights = probas[:, 1]/probas[:, 0]
return weights
def reweight(config_name):
config = load_config(path=f"config/{config_name}")
ckpt_path = f'trained_bdt/{config.nominal_name}_to_{config.target_name}/BDT.pkl'
# Load sklearn model
model = joblib.load(ckpt_path)
# Get weights for nominal array
weights = predict_weights(config, config.plotting_nominal, model)
np.save(f'trained_bdt/{config.nominal_name}_to_{config.target_name}/weights.npy', weights)
# TODO check if this exists in the config
oscillated_weights = predict_weights(config, config.plotting_nominal_oscillated, model)
np.save(f'trained_bdt/{config.nominal_name}_to_{config.target_name}/weights_oscillated.npy', oscillated_weights)
if __name__ == '__main__':
fire.Fire(reweight)