-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
76 lines (62 loc) · 2.13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor
from econml.dml import DML
from econml.metalearners import XLearner
from econml.sklearn_extensions.linear_model import StatsModelsLinearRegression
def estimate_ate_ipw(XZ, t, y):
"""
ATE estimation via IPW
"""
scaler = StandardScaler()
XZ_scaled = scaler.fit_transform(XZ)
lr = LogisticRegression(max_iter=10000)
lr.fit(XZ_scaled, t)
p = lr.predict_proba(XZ_scaled)[:, 1]
p = np.clip(p, 1e-5, 1 - 1e-5)
ate_ipw = np.mean(y[t == 1] / p[t == 1]) - np.mean(y[t == 0] / (1 - p[t == 0]))
return ate_ipw
def estimate_ite_dml(XZ, t, y, XZ_eval):
"""
ITE estimation via DML
"""
dml = DML(
model_y=RandomForestRegressor(random_state=0),
model_t=RandomForestClassifier(random_state=0),
model_final=StatsModelsLinearRegression(fit_intercept=False),
discrete_treatment=True
)
dml.fit(y, t, X=XZ)
ite_est = dml.effect(XZ_eval, T0=0, T1=1)
return ite_est
def estimate_ite_xlearner(XZ, t, y, XZ_eval):
"""
ITE estimation via X-Learner
"""
base_learner = RandomForestRegressor(random_state=0)
xlearner = XLearner(models=base_learner)
xlearner.fit(y, t, X=XZ)
ite_est = xlearner.effect(XZ_eval)
return ite_est
def evaluate_ite(y_true, ite_est):
"""
Model evaluation
"""
ate_est = np.mean(ite_est)
ate_true = np.mean(y_true)
ate_abs_error = np.abs(ate_est - ate_true)
pehe = np.sqrt(mean_squared_error(y_true, ite_est))
return ate_est, pehe, ate_abs_error
def estimate_ite_direct(model_class, X_train_pairs, y_train_ite, X_val_pairs, **model_kwargs):
"""
Noncausal fitting and ITE estimation
"""
model = model_class(**model_kwargs)
model.fit(X_train_pairs, y_train_ite)
ite_est_val = model.predict(X_val_pairs)
return ite_est_val