-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDV0101EN-Final-Assign-Part-2-Questions_last.py
229 lines (200 loc) · 8.54 KB
/
DV0101EN-Final-Assign-Part-2-Questions_last.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
import dash
import more_itertools
from dash import dcc
from dash import html
from dash.dependencies import Input, Output
import pandas as pd
import plotly.graph_objs as go
import plotly.express as px
# Load the data using pandas
data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/historical_automobile_sales.csv')
# Initialize the Dash app
app = dash.Dash(__name__)
# Set the title of the dashboard
#app.title = "Automobile Statistics Dashboard"
#---------------------------------------------------------------------------------
# Create the dropdown menu options
dropdown_options = [
{'label': 'Yearly Statistics', 'value': 'Yearly Statistics'},
{'label': 'Recession Period Statistics', 'value': 'Recession Period Statistics'}
]
# List of years
year_list = [i for i in range(1980, 2024, 1)]
#---------------------------------------------------------------------------------------
# Create the layout of the app
app.layout = html.Div([
#TASK 2.1 Add title to the dashboard
html.H1("Automobile Sales Statistics Dashboard",
style={
'color':'#503D36',
'font-size':'24px'}),
#TASK 2.2: Add two dropdown menus
html.Div([
html.Label("Select Statistics:"),
dcc.Dropdown(
id='dropdown-statistics',
options=dropdown_options,
value='Select Statistics',
placeholder='Select a report type',
style={'width':'80%', 'padding':'3px', 'size':'20px'}
)
]),
html.Div(dcc.Dropdown(
id='select-year',
options=[{'label': i, 'value': i} for i in year_list],
value='Select-year',
placeholder='Select-year'
)),
html.Div([#TASK 2.3: Add a division for output display
html.Div(id='output-container', className='chart-grid', style={'display':'flex'})
])
])
#TASK 2.4: Creating Callbacks
# Define the callback function to update the input container based on the selected statistics
@app.callback(
Output(component_id='select-year', component_property='disabled'),
Input(component_id='dropdown-statistics',component_property='value'))
def update_input_container(selected_statistics):
if selected_statistics =='Yearly Statistics':
return False
else:
return True
#Callback for plotting
# Define the callback function to update the input container based on the selected statistics
@app.callback(
Output(component_id='output-container', component_property='children'),
[Input(component_id='dropdown-statistics', component_property='value'),
Input(component_id='select-year', component_property='value')])
def update_output_container(selected_statistics, input_year):
if selected_statistics == 'Recession Period Statistics':
# Filter the data for recession periods
recession_data = data[data['Recession'] == 1]
#TASK 2.5: Create and display graphs for Recession Report Statistics
#Plot 1 Automobile sales fluctuate over Recession Period (year wise)
# use groupby to create relevant data for plotting
yearly_rec = recession_data.groupby('Year')['Automobile_Sales'].mean().reset_index()
R_chart1 = dcc.Graph(
figure=px.line(
yearly_rec,
x='Year',
y='Automobile_Sales',
title="Average Automobile Sales fluctuation over Recession Period"))
#Plot 2 Calculate the average number of vehicles sold by vehicle type
# use groupby to create relevant data for plotting
#Hint:Use Vehicle_Type and Automobile_Sales columns
average_sales = recession_data.groupby('Vehicle_Type')['Automobile_Sales'].mean().reset_index()
R_chart2 = dcc.Graph(
figure=px.bar(
average_sales,
x='Vehicle_Type',
y='Automobile_Sales',
title="Average Sales by Vehicles Types"))
# Plot 3 Pie chart for total expenditure share by vehicle type during recessions
# grouping data for plotting
# Hint:Use Vehicle_Type and Advertising_Expenditure columns
exp_rec= recession_data.groupby('Vehicle_Type')['Advertising_Expenditure'].mean().reset_index()
R_chart3 = dcc.Graph(
figure=px.pie(
exp_rec,
values='Advertising_Expenditure',
names='Vehicle_Type'
)
)
# Plot 4 bar chart for the effect of unemployment rate on vehicle type and sales
#grouping data for plotting
# Hint:Use unemployment_rate,Vehicle_Type and Automobile_Sales columns
unemp_data = recession_data.groupby(['unemployment_rate','Vehicle_Type'])['Automobile_Sales'].mean().reset_index()
R_chart4 = dcc.Graph(
figure=px.bar(unemp_data,
x= 'unemployment_rate',
y= 'Automobile_Sales',
color= 'Vehicle_Type',
labels={'unemployment_rate': 'Unemployment Rate', 'Automobile_Sales': 'Average Automobile Sales'},
title='Effect of Unemployment Rate on Vehicle Type and Sales'))
return [
html.Div(
className='chart-item',
children=[
html.Div(children=R_chart1),
html.Div(children=R_chart2)
],
),
html.Div(
className='chart-item',
children=[
html.Div(children=R_chart3),
html.Div(children=R_chart4)],
)
]
# TASK 2.6: Create and display graphs for Yearly Report Statistics
# Yearly Statistic Report Plots
# Check for Yearly Statistics.
elif (input_year and selected_statistics=='Yearly Statistics') :
yearly_data = data[data['Year'] == input_year]
#plot 1 Yearly Automobile sales using line chart for the whole period.
# grouping data for plotting.
# Hint:Use the columns Year and Automobile_Sales.
yas= data.groupby('Year')['Automobile_Sales'].mean().reset_index()
Y_chart1 = dcc.Graph(
figure=px.line(
yas,
x='Year',
y='Automobile_Sales',
title='Yearly Automobile Sales'
))
# Plot 2 Total Monthly Automobile sales using line chart.
# grouping data for plotting.
# Hint:Use the columns Month and Automobile_Sales.
mas=data.groupby('Month')['Automobile_Sales'].sum().reset_index()
Y_chart2 = dcc.Graph(
figure=px.line(
mas,
x='Month',
y='Automobile_Sales',
title='Total Monthly Automobile Sales'))
# Plot bar chart for average number of vehicles sold during the given year
# grouping data for plotting.
# Hint:Use the columns Year and Automobile_Sales
avr_vdata=yearly_data.groupby('Year')['Automobile_Sales'].mean().reset_index()
Y_chart3 = dcc.Graph(
figure=px.bar(
avr_vdata,
x='Year',
y='Automobile_Sales',
title= 'Average Vehicles Sold by Vehicle Type in the year {}'.format(input_year))
)
# Total Advertisement Expenditure for each vehicle using pie chart
# grouping data for plotting.
# Hint:Use the columns Vehicle_Type and Advertising_Expenditure
exp_data=yearly_data.groupby('Vehicle_Type')['Advertising_Expenditure'].mean().reset_index()
Y_chart4 = dcc.Graph(
figure=px.pie(
exp_data,
values='Advertising_Expenditure',
names='Vehicle_Type',
title='Average Advertising Expenditure by Vehicle Type in the year {}'.format(input_year))
)
#TASK 2.6: Returning the graphs for displaying Yearly data
return [
html.Div(
className='chart-item',
children=[
html.Div(children=Y_chart1),
html.Div(children=Y_chart2)
]),
html.Div(
className='chart-item',
children=[
html.Div(children=Y_chart3),
html.Div(children=Y_chart4)
]
)
]
else:
return None
# Run the Dash app
if __name__ == '__main__':
app.run_server(debug=True)