-
Notifications
You must be signed in to change notification settings - Fork 185
/
Copy pathnavie_bayes.py
executable file
·190 lines (124 loc) · 5.32 KB
/
navie_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python
import math
import numpy as np
def mean(numbers):
return 1.0 * sum(numbers) / len(numbers)
def test_mean():
numbers = [1, 2, 3, 4, 5]
result = mean(numbers)
print("Numbers are: {} and mean is: {}".format(numbers, result))
def stdev(numbers):
mean_value = mean(numbers)
sum_difference_square = 0.0
for x in numbers:
difference = x - mean_value
difference_square = pow(difference, 2)
sum_difference_square += difference_square
# TODO: Remove "-1" or not
# variance = 1.0 * sum_difference_square / (len(numbers) - 1)
variance = 1.0 * sum_difference_square / len(numbers)
stdev = math.sqrt(variance)
return stdev
def test_stdev():
numbers = [1, 2, 3, 4, 5]
result = stdev(numbers)
print("Numbers are: {} and stdev is: {}".format(numbers, result))
def seperate_by_label(dataset):
# Example: [[6,148,72,35,0,33.6,0.627,50,1], [1,85,66,29,0,26.6,0.351,31,0]]
# Example: {0: [[2, 21, 0]], 1: [[1, 20, 1], [3, 22, 1]]}
label_instances_map = {}
for i in range(len(dataset)):
instance = dataset[i]
label = instance[-1]
if not label_instances_map.has_key(label):
label_instances_map[label] = []
label_instances_map[label].append(instance)
return label_instances_map
def test_seperate_by_label():
dataset = [[1, 20, 1], [2, 21, 0], [3, 22, 1]]
# Should be {0: [[2, 21, 0]], 1: [[1, 20, 1], [3, 22, 1]]}
label_instances_map = seperate_by_label(dataset)
print("Dataset is: {} and seperate by label result is: {}".format(
dataset, label_instances_map))
def get_mean_and_stdev(dataset):
# [[1, 20, 0], [2, 21, 1], [3, 22, 0]] -> [(1, 2, 3), (20, 21, 22), (0, 1, 0)] -> [(2.0, 1.0), (21.0, 1.0)]
mean_and_stdev_list = [(mean(feature), stdev(feature))
for feature in zip(*dataset)]
mean_and_stdev_list_without_label = mean_and_stdev_list[:-1]
return mean_and_stdev_list_without_label
def test_get_mean_and_stdev():
dataset = [[1, 20, 0], [2, 21, 1], [3, 22, 0]]
# Should be [(2.0, 1.0), (21.0, 1.0)]
result = get_mean_and_stdev(dataset)
print("Dataset is: {} and result of get_mean_and_stdev is: {}").format(
dataset, result)
def get_mean_and_stdev_by_label(dataset):
label_instances_map = seperate_by_label(dataset)
# Example: {0: [(2.0, 1.0), (21.0, 1.0)], 1: [(2.0, 0.0), (21.0, 0.0)]}
label_meanstdevlist_map = {}
for label, instances in label_instances_map.iteritems():
label_meanstdevlist_map[label] = get_mean_and_stdev(instances)
return label_meanstdevlist_map
def test_get_mean_and_stdev_by_label():
dataset = [[1, 20, 0], [2, 21, 1], [3, 22, 0]]
# Should be {0: [(2.0, 1.0), (21.0, 1.0)], 1: [(2.0, 0.0), (21.0, 0.0)]}
result = get_mean_and_stdev_by_label(dataset)
print("Dataset is: {} and the result of label_meanstdevlist_map is: {}"
).format(dataset, result)
def calculate_gauss_probability(x, mean, stdev):
# exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
# return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
# TODO: Handle when stdev is 0.0 for small dataset
left_coefficient = 1.0 / (math.sqrt(2 * math.pi) * stdev)
right_exponent = -1.0 * math.pow(x - mean, 2) / (2 * math.pow(stdev, 2))
result = left_coefficient * math.exp(right_exponent)
return result
def test_calculate_gauss_probabiity():
x = 71.5
mean = 73
stdev = 6.2
# Should be 0.0624896575937
probability = calculate_gauss_probability(x, mean, stdev)
print("The probability is: {}".format(probability))
def calculate_gauss_probabilities_by_label(label_meanstdevlist_map, instance):
label_probability_map = {}
# Example: {0: [(2.0, 1.0), (21.0, 1.0)], 1: [(2.0, 0.0), (21.0, 0.0)]}
for label, mean_stdev_list in label_meanstdevlist_map.iteritems():
label_probability_map[label] = 1
for i in range(len(mean_stdev_list)):
mean, stdev = mean_stdev_list[i]
x = instance[i]
label_probability_map[label] *= calculate_gauss_probability(
x, mean, stdev)
return label_probability_map
def test_calculate_gauss_probabilities_by_label():
label_meanstdevlist_map = {0: [(1, 0.5)], 1: [(20, 5.0)]}
instance = [1.1, '?']
label_probability_map = calculate_gauss_probabilities_by_label(
label_meanstdevlist_map, instance)
# Probabilities for each class: {0: 0.7820853879509118, 1: 6.298736258150442e-05}
print("The label_probability_map is: {}".format(label_probability_map))
def predict(label_meanstdevlist_map, instance):
label_probability_map = calculate_gauss_probabilities_by_label(
label_meanstdevlist_map, instance)
best_propability = 0
best_label = None
for label, probability in label_probability_map.iteritems():
if probability > best_propability:
best_propability = probability
best_label = label
return best_label
def main():
# [5, 9]
dataset = [[6, 148, 72, 35, 0, 33.6, 0.627, 50, 1],
[1, 85, 66, 29, 0, 26.6, 0.351, 31, 0],
[8, 183, 64, 0, 0, 23.3, 0.672, 32, 1],
[2, 89, 68, 23, 94, 28.1, 0.167, 21, 0],
[0, 137, 40, 35, 168, 43.1, 2.288, 33, 1]]
# [8]
test_dataset = [7, 147, 72, 35, 0, 33.6, 0.628, 50]
label_meanstdevlist_map = get_mean_and_stdev_by_label(dataset)
result = predict(label_meanstdevlist_map, test_dataset)
print("Test dataset is: {} and result is: {}".format(test_dataset, result))
if __name__ == "__main__":
main()