forked from melrobin/SplitBregman
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSB_ITV.m
executable file
·48 lines (47 loc) · 1.17 KB
/
SB_ITV.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
function u = SB_ITV(g,mu)
% Split Bregman Isotropic Total Variation Denoising
%
% u = arg min_u 1/2||u-g||_2^2 + mu*ITV(u)
%
% Refs:
% *Goldstein and Osher, The split Bregman method for L1 regularized problems
% SIAM Journal on Imaging Sciences 2(2) 2009
% *Micchelli et al, Proximity algorithms for image models: denoising
% Inverse Problems 27(4) 2011
%
% Benjamin Trémoulhéac
% University College London
% April 2012
g = g(:);
n = length(g);
[B Bt BtB] = DiffOper(sqrt(n));
b = zeros(2*n,1);
d = b;
u = g;
err = 1;k = 1;
tol = 1e-3;
lambda = 1;
while err > tol
fprintf('it. %g ',k);
up = u;
[u,~] = cgs(speye(n)+BtB, g-lambda*Bt*(b-d),1e-5,100);
Bub = B*u+b;
s = sqrt(Bub(1:n).^2 + Bub(n+1:end).^2);
d = [max(s-mu/lambda,0).*Bub(1:n)./s ;
max(s-mu/lambda,0).*Bub(n+1:end)./s ];
b = Bub-d;
err = norm(up-u)/norm(u);
fprintf('err=%g \n',err);
k = k+1;
end
fprintf('Stopped because norm(up-u)/norm(u) <= tol=%.1e\n',tol);
end
function [B Bt BtB] = DiffOper(N)
D = spdiags([-ones(N,1) ones(N,1)], [0 1], N,N+1);
D(:,1) = [];
D(1,1) = 0;
B = [ kron(speye(N),D) ; kron(D,speye(N)) ];
Bt = B';
BtB = Bt*B;
end