diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..b394645
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,24 @@
+meta_datasets/
+__pycache__
+assets
+cache
+tmp
+.ropeproject
+train_loop.png
+scripts/tmp_data/train.txt
+scripts/tmp_data/valid.txt
+scripts/tmp_data/test.txt
+wavenet_models/
+snippets/tmp
+sbatch_logs/
+*last.ckpt
+*.pth
+taming_transformers.egg-info/
+logs
+!melgan/logs
+*vggishish16.pt
+data/ffhq
+data/celebahq
+melgan/logs/*e*
+data/backup_links
+data/backup_demo
diff --git a/Dockerfile b/Dockerfile
new file mode 100644
index 0000000..0ee7bc5
--- /dev/null
+++ b/Dockerfile
@@ -0,0 +1,281 @@
+FROM ubuntu:18.04
+
+# RUN rm /etc/apt/sources.list.d/cuda.list && rm /etc/apt/sources.list.d/nvidia-ml.list
+
+RUN apt-get update
+RUN apt-get install -y sudo
+
+RUN adduser --disabled-password --gecos '' ubuntu
+RUN adduser ubuntu sudo
+RUN echo '%sudo ALL=(ALL) NOPASSWD:ALL' >> /etc/sudoers
+USER ubuntu
+
+SHELL ["/bin/bash", "-c"]
+
+RUN sudo apt-get -qq install curl vim git zip libglib2.0-0 libsndfile1 libsm6 libxext6 libxrender-dev
+
+WORKDIR /home/ubuntu/
+
+RUN curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
+RUN bash ./Miniconda3-latest-Linux-x86_64.sh -b
+ENV PATH="/home/ubuntu/miniconda3/bin:$PATH"
+RUN echo ". /home/ubuntu/miniconda3/etc/profile.d/conda.sh" >> ~/.profile
+RUN conda init bash
+RUN conda config --set auto_activate_base false
+
+RUN echo $'name: specvqgan\n\
+channels:\n\
+ - pytorch\n\
+ - conda-forge\n\
+ - defaults\n\
+dependencies:\n\
+ - _libgcc_mutex=0.1=conda_forge\n\
+ - _openmp_mutex=4.5=1_llvm\n\
+ - abseil-cpp=20210324.0=h9c3ff4c_0\n\
+ - absl-py=0.12.0=pyhd8ed1ab_0\n\
+ - aiohttp=3.7.4=py38h497a2fe_0\n\
+ - altair=4.1.0=py_1\n\
+ - appdirs=1.4.4=pyh9f0ad1d_0\n\
+ - argh=0.26.2=pyh9f0ad1d_1002\n\
+ - argon2-cffi=20.1.0=py38h497a2fe_2\n\
+ - arrow-cpp=4.0.0=py38hd6878d3_0_cpu\n\
+ - astor=0.8.1=pyh9f0ad1d_0\n\
+ - async-timeout=3.0.1=py_1000\n\
+ - async_generator=1.10=py_0\n\
+ - attrs=20.3.0=pyhd3deb0d_0\n\
+ - audioread=2.1.9=py38h578d9bd_0\n\
+ - autopep8=1.5.6=pyhd3eb1b0_0\n\
+ - aws-c-cal=0.4.5=h76129ab_8\n\
+ - aws-c-common=0.5.2=h7f98852_0\n\
+ - aws-c-event-stream=0.2.7=h6bac3ce_1\n\
+ - aws-c-io=0.9.1=ha5b09cb_1\n\
+ - aws-checksums=0.1.11=h99e32c3_3\n\
+ - aws-sdk-cpp=1.8.151=hceb1b1e_1\n\
+ - backcall=0.2.0=pyh9f0ad1d_0\n\
+ - backports=1.0=py_2\n\
+ - backports.functools_lru_cache=1.6.4=pyhd8ed1ab_0\n\
+ - base58=2.1.0=pyhd8ed1ab_0\n\
+ - blas=1.0=mkl\n\
+ - bleach=3.3.0=pyh44b312d_0\n\
+ - blinker=1.4=py_1\n\
+ - boto3=1.17.59=pyhd8ed1ab_0\n\
+ - botocore=1.20.59=pyhd8ed1ab_1\n\
+ - brotli=1.0.9=h9c3ff4c_4\n\
+ - brotlipy=0.7.0=py38h497a2fe_1001\n\
+ - bzip2=1.0.8=h7f98852_4\n\
+ - c-ares=1.17.1=h7f98852_1\n\
+ - ca-certificates=2021.5.30=ha878542_0\n\
+ - cachetools=4.2.2=pyhd8ed1ab_0\n\
+ - certifi=2021.5.30=py38h578d9bd_0\n\
+ - cffi=1.14.5=py38ha65f79e_0\n\
+ - chardet=4.0.0=py38h578d9bd_1\n\
+ - click=7.1.2=pyh9f0ad1d_0\n\
+ - cryptography=3.4.7=py38ha5dfef3_0\n\
+ - cudatoolkit=11.1.1=h6406543_8\n\
+ - cycler=0.10.0=py_2\n\
+ - defusedxml=0.7.1=pyhd8ed1ab_0\n\
+ - entrypoints=0.3=pyhd8ed1ab_1003\n\
+ - ffmpeg=4.3.1=hca11adc_2\n\
+ - flake8=3.9.0=pyhd3eb1b0_0\n\
+ - freetype=2.10.4=h0708190_1\n\
+ - fsspec=2021.4.0=pyhd8ed1ab_0\n\
+ - future=0.18.2=py38h578d9bd_3\n\
+ - gettext=0.19.8.1=h0b5b191_1005\n\
+ - gflags=2.2.2=he1b5a44_1004\n\
+ - gitdb=4.0.7=pyhd8ed1ab_0\n\
+ - gitpython=3.1.15=pyhd8ed1ab_0\n\
+ - glog=0.4.0=h49b9bf7_3\n\
+ - gmp=6.2.1=h58526e2_0\n\
+ - gnutls=3.6.13=h85f3911_1\n\
+ - google-auth=1.28.0=pyh44b312d_0\n\
+ - google-auth-oauthlib=0.4.1=py_2\n\
+ - grpc-cpp=1.37.0=h36de60a_1\n\
+ - grpcio=1.37.0=py38hdd6454d_0\n\
+ - idna=2.10=pyh9f0ad1d_0\n\
+ - imageio=2.9.0=py_0\n\
+ - imageio-ffmpeg=0.4.3=pyhd8ed1ab_0\n\
+ - importlib-metadata=4.0.1=py38h578d9bd_0\n\
+ - ipykernel=5.5.5=py38hd0cf306_0\n\
+ - ipython=7.22.0=py38hd0cf306_0\n\
+ - ipython_genutils=0.2.0=py_1\n\
+ - ipywidgets=7.6.3=pyhd3deb0d_0\n\
+ - jedi=0.18.0=py38h578d9bd_2\n\
+ - jinja2=2.11.3=pyh44b312d_0\n\
+ - jmespath=0.10.0=pyh9f0ad1d_0\n\
+ - joblib=1.0.1=pyhd8ed1ab_0\n\
+ - jpeg=9b=h024ee3a_2\n\
+ - jsonschema=3.2.0=pyhd8ed1ab_3\n\
+ - jupyter_client=6.1.12=pyhd8ed1ab_0\n\
+ - jupyter_core=4.7.1=py38h578d9bd_0\n\
+ - jupyterlab_pygments=0.1.2=pyh9f0ad1d_0\n\
+ - jupyterlab_widgets=1.0.0=pyhd8ed1ab_1\n\
+ - kiwisolver=1.3.1=py38h1fd1430_1\n\
+ - krb5=1.17.2=h926e7f8_0\n\
+ - lame=3.100=h7f98852_1001\n\
+ - lcms2=2.12=h3be6417_0\n\
+ - ld_impl_linux-64=2.35.1=hea4e1c9_2\n\
+ - libcurl=7.76.1=hc4aaa36_1\n\
+ - libedit=3.1.20191231=he28a2e2_2\n\
+ - libev=4.33=h516909a_1\n\
+ - libevent=2.1.10=hcdb4288_3\n\
+ - libffi=3.3=h58526e2_2\n\
+ - libflac=1.3.3=h9c3ff4c_1\n\
+ - libgcc-ng=9.3.0=h2828fa1_19\n\
+ - libgfortran-ng=7.5.0=h14aa051_19\n\
+ - libgfortran4=7.5.0=h14aa051_19\n\
+ - libiconv=1.16=h516909a_0\n\
+ - libllvm10=10.0.1=he513fc3_3\n\
+ - libnghttp2=1.43.0=h812cca2_0\n\
+ - libogg=1.3.4=h7f98852_1\n\
+ - libopus=1.3.1=h7f98852_1\n\
+ - libpng=1.6.37=h21135ba_2\n\
+ - libprotobuf=3.15.8=h780b84a_0\n\
+ - librosa=0.8.0=pyh9f0ad1d_0\n\
+ - libsndfile=1.0.31=h9c3ff4c_1\n\
+ - libsodium=1.0.18=h36c2ea0_1\n\
+ - libssh2=1.9.0=ha56f1ee_6\n\
+ - libstdcxx-ng=9.3.0=h6de172a_19\n\
+ - libthrift=0.14.1=he6d91bd_1\n\
+ - libtiff=4.1.0=h2733197_1\n\
+ - libutf8proc=2.6.1=h7f98852_0\n\
+ - libuv=1.41.0=h7f98852_0\n\
+ - libvorbis=1.3.7=h9c3ff4c_0\n\
+ - llvm-openmp=11.1.0=h4bd325d_1\n\
+ - llvmlite=0.36.0=py38h4630a5e_0\n\
+ - lz4-c=1.9.3=h9c3ff4c_0\n\
+ - markdown=3.3.4=pyhd8ed1ab_0\n\
+ - markupsafe=1.1.1=py38h497a2fe_3\n\
+ - matplotlib-base=3.4.1=py38hcc49a3a_0\n\
+ - mccabe=0.6.1=py38_1\n\
+ - mistune=0.8.4=py38h497a2fe_1003\n\
+ - mkl=2020.4=h726a3e6_304\n\
+ - mkl-service=2.3.0=py38h1e0a361_2\n\
+ - mkl_fft=1.3.0=py38h5c078b8_1\n\
+ - mkl_random=1.2.0=py38hc5bc63f_1\n\
+ - multidict=5.1.0=py38h497a2fe_1\n\
+ - nbclient=0.5.3=pyhd8ed1ab_0\n\
+ - nbconvert=6.0.7=py38h578d9bd_3\n\
+ - nbformat=5.1.3=pyhd8ed1ab_0\n\
+ - ncurses=6.2=h58526e2_4\n\
+ - nest-asyncio=1.5.1=pyhd8ed1ab_0\n\
+ - nettle=3.6=he412f7d_0\n\
+ - ninja=1.10.2=h4bd325d_0\n\
+ - notebook=6.3.0=pyha770c72_1\n\
+ - numba=0.53.1=py38h0e12cce_0\n\
+ - numpy=1.19.2=py38h54aff64_0\n\
+ - numpy-base=1.19.2=py38hfa32c7d_0\n\
+ - oauthlib=3.0.1=py_0\n\
+ - olefile=0.46=pyh9f0ad1d_1\n\
+ - omegaconf=2.0.6=py38h578d9bd_0\n\
+ - openh264=2.1.1=h780b84a_0\n\
+ - openssl=1.1.1k=h7f98852_0\n\
+ - orc=1.6.7=heec2584_1\n\
+ - packaging=20.9=pyh44b312d_0\n\
+ - pandas=1.2.4=py38h1abd341_0\n\
+ - pandoc=2.12=h7f98852_0\n\
+ - pandocfilters=1.4.2=py_1\n\
+ - parquet-cpp=1.5.1=2\n\
+ - parso=0.8.2=pyhd8ed1ab_0\n\
+ - pexpect=4.8.0=pyh9f0ad1d_2\n\
+ - pickleshare=0.7.5=py_1003\n\
+ - pillow=8.2.0=py38he98fc37_0\n\
+ - pip=21.1=pyhd8ed1ab_0\n\
+ - pooch=1.3.0=pyhd8ed1ab_0\n\
+ - prometheus_client=0.10.1=pyhd8ed1ab_0\n\
+ - prompt-toolkit=3.0.18=pyha770c72_0\n\
+ - protobuf=3.15.8=py38h709712a_0\n\
+ - ptyprocess=0.7.0=pyhd3deb0d_0\n\
+ - pyarrow=4.0.0=py38hc9229eb_0_cpu\n\
+ - pyasn1=0.4.8=py_0\n\
+ - pyasn1-modules=0.2.7=py_0\n\
+ - pycodestyle=2.6.0=pyhd3eb1b0_0\n\
+ - pycparser=2.20=pyh9f0ad1d_2\n\
+ - pydeck=0.5.0=pyh9f0ad1d_0\n\
+ - pyflakes=2.2.0=pyhd3eb1b0_0\n\
+ - pygments=2.8.1=pyhd8ed1ab_0\n\
+ - pyjwt=2.0.1=pyhd8ed1ab_1\n\
+ - pyopenssl=20.0.1=pyhd8ed1ab_0\n\
+ - pyparsing=2.4.7=pyh9f0ad1d_0\n\
+ - pyrsistent=0.17.3=py38h497a2fe_2\n\
+ - pysocks=1.7.1=py38h578d9bd_3\n\
+ - pysoundfile=0.10.3.post1=pyhd3deb0d_0\n\
+ - python=3.8.8=hffdb5ce_0_cpython\n\
+ - python-dateutil=2.8.1=py_0\n\
+ - python_abi=3.8=1_cp38\n\
+ - pytorch=1.8.1=py3.8_cuda11.1_cudnn8.0.5_0\n\
+ - pytorch-lightning=1.2.10=pyhd8ed1ab_0\n\
+ - pytz=2021.1=pyhd8ed1ab_0\n\
+ - pyyaml=5.4.1=py38h497a2fe_0\n\
+ - pyzmq=22.0.3=py38h2035c66_1\n\
+ - re2=2021.04.01=h9c3ff4c_0\n\
+ - readline=8.1=h46c0cb4_0\n\
+ - requests=2.25.1=pyhd3deb0d_0\n\
+ - requests-oauthlib=1.3.0=pyh9f0ad1d_0\n\
+ - resampy=0.2.2=py_0\n\
+ - rsa=4.7.2=pyh44b312d_0\n\
+ - s2n=1.0.0=h9b69904_0\n\
+ - s3transfer=0.4.2=pyhd8ed1ab_0\n\
+ - scikit-learn=0.24.1=py38ha9443f7_0\n\
+ - scipy=1.6.2=py38h91f5cce_0\n\
+ - send2trash=1.5.0=py_0\n\
+ - setuptools=49.6.0=py38h578d9bd_3\n\
+ - six=1.15.0=pyh9f0ad1d_0\n\
+ - smmap=3.0.5=pyh44b312d_0\n\
+ - snappy=1.1.8=he1b5a44_3\n\
+ - sqlite=3.35.5=h74cdb3f_0\n\
+ - streamlit=0.80.0=pyhd8ed1ab_0\n\
+ - tensorboard=2.4.1=pyhd8ed1ab_0\n\
+ - tensorboard-plugin-wit=1.8.0=pyh44b312d_0\n\
+ - terminado=0.9.4=py38h578d9bd_0\n\
+ - testpath=0.4.4=py_0\n\
+ - threadpoolctl=2.1.0=pyh5ca1d4c_0\n\
+ - tk=8.6.10=h21135ba_1\n\
+ - toml=0.10.2=pyhd8ed1ab_0\n\
+ - toolz=0.11.1=py_0\n\
+ - torchaudio=0.8.1=py38\n\
+ - torchmetrics=0.3.1=pyhd8ed1ab_0\n\
+ - torchvision=0.9.1=py38_cu111\n\
+ - tornado=6.1=py38h497a2fe_1\n\
+ - tqdm=4.60.0=pyhd8ed1ab_0\n\
+ - traitlets=5.0.5=py_0\n\
+ - typing-extensions=3.7.4.3=0\n\
+ - typing_extensions=3.7.4.3=py_0\n\
+ - tzlocal=2.1=pyh9f0ad1d_0\n\
+ - urllib3=1.26.4=pyhd8ed1ab_0\n\
+ - validators=0.18.2=pyhd3deb0d_0\n\
+ - watchdog=2.0.3=py38h578d9bd_0\n\
+ - wcwidth=0.2.5=pyh9f0ad1d_2\n\
+ - webencodings=0.5.1=py_1\n\
+ - werkzeug=1.0.1=pyh9f0ad1d_0\n\
+ - wheel=0.36.2=pyhd3deb0d_0\n\
+ - widgetsnbextension=3.5.1=py38h578d9bd_4\n\
+ - x264=1!161.3030=h7f98852_1\n\
+ - xz=5.2.5=h516909a_1\n\
+ - yaml=0.2.5=h516909a_0\n\
+ - yarl=1.6.3=py38h497a2fe_1\n\
+ - zeromq=4.3.4=h9c3ff4c_0\n\
+ - zipp=3.4.1=pyhd8ed1ab_0\n\
+ - zlib=1.2.11=h516909a_1010\n\
+ - zstd=1.4.9=ha95c52a_0\n\
+ - pip:\n\
+ - albumentations==0.5.2\n\
+ - decorator==4.4.2\n\
+ - imgaug==0.4.0\n\
+ - networkx==2.5.1\n\
+ - opencv-python==4.1.2.30\n\
+ - opencv-python-headless==4.5.1.48\n\
+ - pywavelets==1.1.1\n\
+ - scikit-image==0.18.1\n\
+ - shapely==1.7.1\n\
+ - test-tube==0.7.5\n\
+ - tifffile==2021.4.8\n\
+
+' >> conda_env.yml
+
+RUN conda env create -f conda_env.yml
+RUN conda clean -afy
+RUN rm ./Miniconda3-latest-Linux-x86_64.sh
+
+SHELL ["conda", "run", "-n", "specvqgan", "/bin/bash", "-c"]
+
+ENTRYPOINT ["conda", "run", "--no-capture-output", "-n", "specvqgan"]
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000..30a1a4f
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2021 Vladimir Iashin
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..cdeca14
--- /dev/null
+++ b/README.md
@@ -0,0 +1,557 @@
+# Taming Visually Guided Sound Generation
+• [[Project Page](https://v-iashin.github.io/SpecVQGAN)]
+• [arXiv (Coming Soon)]
+• [[Poster](https://v-iashin.github.io/images/specvqgan/poster.pdf)]
+•
+
+
+
+Listen for the samples on our [project page](https://v-iashin.github.io/SpecVQGAN).
+
+# Overview
+We propose to tame the visually guided sound generation by shrinking a training dataset to a set of representative vectors aka. a codebook.
+These codebook vectors can, then, be controllably sampled to form a novel sound given a set of visual cues as a prime.
+
+The codebook is trained on spectrograms similarly to [VQGAN](https://arxiv.org/abs/2012.09841) (an upgraded [VQVAE](https://arxiv.org/abs/1711.00937)).
+We refer to it as **Spectrogram VQGAN**
+
+
+
+Once the spectrogram codebook is trained, we can train a **transformer** (a variant of [GPT-2](https://openai.com/blog/better-language-models/)) to autoregressively sample the codebook entries as tokens conditioned on a set of visual features
+
+
+
+This approach allows training a spectrogram generation model which produces long, relevant, and high-fidelity sounds while supporting tens of data classes.
+
+- [Taming Visually Guided Sound Generation](#taming-visually-guided-sound-generation)
+- [Overview](#overview)
+- [Environment Preparation](#environment-preparation)
+ - [Conda](#conda)
+ - [Docker](#docker)
+- [Data](#data)
+ - [Download](#download)
+ - [Extract Features Manually](#extract-features-manually)
+- [Pretrained Models](#pretrained-models)
+ - [Codebooks](#codebooks)
+ - [Transformers](#transformers)
+ - [VGGish-ish, Melception, and MelGAN](#vggish-ish-melception-and-melgan)
+- [Training](#training)
+ - [Training a Spectrogram Codebook](#training-a-spectrogram-codebook)
+ - [Training a Transformer](#training-a-transformer)
+ - [VAS Transformer](#vas-transformer)
+ - [VGGSound Transformer](#vggsound-transformer)
+ - [Controlling the Condition Size](#controlling-the-condition-size)
+ - [Training VGGish-ish and Melception](#training-vggish-ish-and-melception)
+ - [Training MelGAN](#training-melgan)
+- [Evaluation](#evaluation)
+- [Sampling Tool](#sampling-tool)
+- [The Neural Audio Codec Demo](#the-neural-audio-codec-demo)
+- [Citation](#citation)
+- [Acknowledgments](#acknowledgments)
+
+
+# Environment Preparation
+
+During experimentation, we used Linux machines with `conda` virtual environments, PyTorch 1.8 and CUDA 11.
+
+Start by cloning this repo
+```bash
+git clone https://github.com/v-iashin/SpecVQGAN.git
+```
+
+Next, install the environment.
+For your convenience, we provide both `conda` and `docker` environments.
+
+## Conda
+```bash
+conda env create -f conda_env.yml
+```
+Test your environment
+```bash
+conda activate specvqgan
+python -c "import torch; print(torch.cuda.is_available())"
+# True
+```
+
+## Docker
+Download the image from Docker Hub and test if CUDA is available:
+```bash
+docker run \
+ --mount type=bind,source=/absolute/path/to/SpecVQGAN/,destination=/home/ubuntu/SpecVQGAN/ \
+ --mount type=bind,source=/absolute/path/to/logs/,destination=/home/ubuntu/SpecVQGAN/logs/ \
+ --mount type=bind,source=/absolute/path/to/vggsound/features/,destination=/home/ubuntu/SpecVQGAN/data/vggsound/ \
+ --shm-size 8G \
+ -it --gpus '"device=0"' \
+ iashin/specvqgan:latest \
+ python
+>>> import torch; print(torch.cuda.is_available())
+# True
+```
+or build it yourself
+```bash
+docker build - < Dockerfile --tag specvqgan
+```
+
+# Data
+In this project, we used [VAS](https://github.com/PeihaoChen/regnet#download-datasets) and [VGGSound](www.robots.ox.ac.uk/~vgg/data/vggsound/) datasets.
+VAS can be downloaded directly using the link provided in the [RegNet](https://github.com/PeihaoChen/regnet#download-datasets) repository.
+For VGGSound, however, one might need to retrieve videos directly from YouTube.
+
+## Download
+The scripts will download features, check the `md5` sum, unpack, and do a clean-up for each part of the dataset:
+```bash
+cd ./data
+# 24GB
+bash ./download_vas_features.sh
+# 420GB (+ 420GB if you also need ResNet50 Features)
+bash ./download_vggsound_features.sh
+```
+The unpacked features are going to be saved in `./data/downloaded_features/*`.
+Move them to `./data/vas` and `./data/vggsound` such that the folder structure would match the structure of the demo files.
+By default, it will download `BN Inception` features, to download `ResNet50` features uncomment the lines in scripts `./download_*_features.sh`
+
+If you wish to download the parts manually, use the following URL templates:
+
+- `https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/vas/*.tar`
+- `https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/vggsound/*.tar`
+
+Also, make sure to check the `md5` sums provided in [`./data/md5sum_vas.md5`](./data/md5sum_vas.md5) and [`./data/md5sum_vggsound.md5`](./data/md5sum_vggsound.md5) along with file names.
+
+Note, we distribute features for the VGGSound dataset in 64 parts.
+Each part holds ~3k clips and can be used independently as a subset of the whole dataset (the parts are not class-stratified though).
+
+## Extract Features Manually
+
+For `BN Inception` features, we employ the same procedure as [RegNet](https://github.com/PeihaoChen/regnet#data-preprocessing).
+
+For `ResNet50` features, we rely on [video_features](https://v-iashin.github.io/video_features/models/resnet/)
+repository and used these commands:
+```bash
+# VAS (few hours on three 2080Ti)
+strings=("dog" "fireworks" "drum" "baby" "gun" "sneeze" "cough" "hammer")
+for class in "${strings[@]}"; do
+ python main.py \
+ --feature_type resnet50 \
+ --device_ids 0 1 2 \
+ --batch_size 86 \
+ --extraction_fps 21.5 \
+ --file_with_video_paths ./paths_to_mp4_${class}.txt \
+ --output_path ./data/vas/features/${class}/feature_resnet50_dim2048_21.5fps \
+ --on_extraction save_pickle
+done
+
+# VGGSound (6 days on three 2080Ti)
+python main.py \
+ --feature_type resnet50 \
+ --device_ids 0 1 2 \
+ --batch_size 86 \
+ --extraction_fps 21.5 \
+ --file_with_video_paths ./paths_to_mp4s.txt \
+ --output_path ./data/vggsound/feature_resnet50_dim2048_21.5fps \
+ --on_extraction save_pickle
+```
+Similar to `BN Inception`, we need to "tile" (cycle) a video if it is shorter than 10s. For
+`ResNet50` we achieve this by tiling the resulting frame-level features up to 215 on temporal dimension, e.g. as follows:
+```python
+feats = pickle.load(open(path, 'rb')).astype(np.float32)
+reps = 1 + (215 // feats.shape[0])
+feats = np.tile(feats, (reps, 1))[:215, :]
+with open(new_path, 'wb') as file:
+ pickle.dump(feats, file)
+```
+
+
+
+# Pretrained Models
+Unpack the pre-trained models to `./logs/` directory.
+
+## Codebooks
+| Trained on | Evaluated on | FID ↓ | Avg. MKL ↓ | Link / MD5SUM |
+| ---------: | -----------: | ----: | ---------: | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| VGGSound | VGGSound | 1.0 | 0.8 | [7ea229427297b5d220fb1c80db32dbc5](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-05-19T22-16-54_vggsound_codebook.tar.gz) |
+| VAS | VAS | 6.0 | 1.0 | [0024ad3705c5e58a11779d3d9e97cc8a](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-06T19-42-53_vas_codebook.tar.gz) |
+
+Run [Sampling Tool](#sampling-tool) to see the reconstruction results for available data.
+
+## Transformers
+
+The setting **(a)**: the transformer is trained on *VGGSound* to sample from the *VGGSound* codebook:
+
+| Condition | Features | FID ↓ | Avg. MKL ↓ | Sample Time️ ↓ | Link / MD5SUM |
+| --------: | -----------: | ----: | ---------: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| No Feats | | 13.5 | 9.7 | 7.7 | [b1f9bb63d831611479249031a1203371](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-20T16-35-20_vggsound_transformer.tar.gz) |
+| 1 Feat | BN Inception | 8.6 | 7.7 | 7.7 | [f2fe41dab17e232bd94c6d119a807fee](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-03T11-18-51_vggsound_transformer.tar.gz) |
+| 1 Feat | ResNet50 | 11.5* | 7.3* | 7.7 | [27a61d4b74a72578d13579333ed056f6](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-07-30T21-03-22_vggsound_transformer.tar.gz) |
+| 5 Feats | BN Inception | 9.4 | 7.0 | 7.9 | [b082d894b741f0d7a1af9c2732bad70f](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-03T09-34-10_vggsound_transformer.tar.gz) |
+| 5 Feats | ResNet50 | 11.3* | 7.0* | 7.9 | [f4d7105811589d441b69f00d7d0b8dc8](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-07-30T21-34-25_vggsound_transformer.tar.gz) |
+| 212 Feats | BN Inception | 9.6 | 6.8 | 11.8 | [79895ac08303b1536809cad1ec9a7502](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-03T07-27-58_vggsound_transformer.tar.gz) |
+| 212 Feats | ResNet50 | 10.5* | 6.9* | 11.8 | [b222cc0e7aeb419f533d5806a08669fe](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-07-30T21-34-41_vggsound_transformer.tar.gz) |
+
+\* – calculated on 1 sampler per video the test set instead of 10 samples per video as the rest.
+Evaluating a model on a larger number of samples per video is an expensive procedure.
+When evaluative on 10 samples per video, one might expect that the values might improve a bit (~+0.1).
+
+The setting **(b)**: the transformer is trained on *VAS* to sample from the *VGGSound* codebook
+| Condition | Features | FID ↓ | Avg. MKL ↓ | Sample Time️ ↓ | Link / MD5SUM |
+| --------: | -----------: | ----: | ---------: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| No Feats | | 33.7 | 9.6 | 7.7 | [e6b0b5be1f8ac551700f49d29cda50d7](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-20T16-34-36_vas_transformer.tar.gz) |
+| 1 Feat | BN Inception | 38.6 | 7.3 | 7.7 | [a98a124d6b3613923f28adfacba3890c](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-03T06-32-51_vas_transformer.tar.gz) |
+| 1 Feat | ResNet50 | 26.5* | 6.7* | 7.7 | [37cd48f06d74176fa8d0f27303841d94](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-07-29T11-47-40_vas_transformer.tar.gz) |
+| 5 Feats | BN Inception | 29.1 | 6.9 | 7.9 | [38da002f900fb81275b73e158e919e16](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-03T05-51-34_vas_transformer.tar.gz) |
+| 5 Feats | ResNet50 | 22.3* | 6.5* | 7.9 | [7b6951a33771ef527f1c1b1f99b7595e](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-07-29T11-36-00_vas_transformer.tar.gz) |
+| 212 Feats | BN Inception | 20.5 | 6.0 | 11.8 | [1c4e56077d737677eac524383e6d98d3](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-03T05-38-40_vas_transformer.tar.gz) |
+| 212 Feats | ResNet50 | 20.8* | 6.2* | 11.8 | [6e553ea44c8bc7a3310961f74e7974ea](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-07-29T11-52-28_vas_transformer.tar.gz) |
+
+\* – calculated on 10 sampler per video the validation set instead of 100 samples per video as the rest.
+Evaluating a model on a larger number of samples per video is an expensive procedure.
+When evaluative on 10 samples per video, one might expect that the values might improve a bit (~+0.1).
+
+The setting **(c)**: the transformer is trained on *VAS* to sample from the *VAS* codebook
+| Condition | Features | FID ↓ | Avg. MKL ↓ | Sample Time ↓ | Link / MD5SUM |
+| --------: | -----------: | ----: | ---------: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| No Feats | | 28.7 | 9.2 | 7.6 | [ea4945802094f826061483e7b9892839](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-20T16-24-38_vas_transformer.tar.gz) |
+| 1 Feat | BN Inception | 25.1 | 6.6 | 7.6 | [8a3adf60baa049a79ae62e2e95014ff7](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-09T13-31-37_vas_transformer.tar.gz) |
+| 1 Feat | ResNet50 | 25.1* | 6.3* | 7.6 | [a7a1342030653945e97f68a8112ed54a](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-07-29T14-59-49_vas_transformer.tar.gz) |
+| 5 Feats | BN Inception | 24.8 | 6.2 | 7.8 | [4e1b24207780eff26a387dd9317d054d](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-09T14-14-24_vas_transformer.tar.gz) |
+| 5 Feats | ResNet50 | 20.9* | 6.1* | 7.8 | [78b8d42be19dd1b0a346b1f512967302](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-07-29T14-51-25_vas_transformer.tar.gz) |
+| 212 Feats | BN Inception | 25.4 | 5.9 | 11.6 | [4542632b3c5bfbf827ea7868cedd4634](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-09T15-17-18_vas_transformer.tar.gz) |
+| 212 Feats | ResNet50 | 22.6* | 5.8* | 11.6 | [dc2b5cbd28ad98d2f9ca4329e8aa0f64](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-07-29T13-34-39_vas_transformer.tar.gz) |
+
+\* – calculated on 10 sampler per video the validation set instead of 100 samples per video as the rest.
+Evaluating a model on a larger number of samples per video is an expensive procedure.
+When evaluative on 10 samples per video, one might expect that the values might improve a bit (~+0.1).
+
+A transformer can also be trained to generate a spectrogram given a specific **class**.
+We also provide pre-trained models for all three settings:
+The setting **(c)**: the transformer is trained on *VAS* to sample from the *VAS* codebook
+| Setting | Codebook | Sampling for | FID ↓ | Avg. MKL ↓ | Sample Time ↓ | Link / MD5SUM |
+| ------: | -------: | -----------: | ----: | ---------: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| (a) | VGGSound | VGGSound | 7.8 | 5.0 | 7.7 | [98a3788ab973f1c3cc02e2e41ad253bc](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-03T00-43-28_vggsound_transformer.tar.gz) |
+| (b) | VGGSound | VAS | 39.6 | 6.7 | 7.7 | [16a816a270f09a76bfd97fe0006c704b](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-08T14-41-19_vas_transformer.tar.gz) |
+| (c) | VAS | VAS | 23.9 | 5.5 | 7.6 | [412b01be179c2b8b02dfa0c0b49b9a0f](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/models/2021-06-09T09-42-07_vas_transformer.tar.gz) |
+
+## VGGish-ish, Melception, and MelGAN
+
+These will be downloaded automatically during the first run.
+However, if you need them separately, here are the checkpoints
+- [VGGish-ish](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/vggishish16.pt) (1.54GB, `197040c524a07ccacf7715d7080a80bd`) + Normalization Parameters (in `/specvqgan/modules/losses/vggishish/data/`)
+- [Melception](https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/melception-21-05-10T09-28-40.pt) (0.27GB, `a71a41041e945b457c7d3d814bbcf72d`) + Normalization Parameters (in `/specvqgan/modules/losses/vggishish/data/`)
+- [MelGAN](./vocoder/logs/vggsound)
+
+The reference performance of VGGish-ish and Melception:
+| Model | Top-1 Acc | Top-5 Acc | mAP | mAUC |
+| ---------- | --------- | --------- | ----- | ----- |
+| VGGish-ish | 34.70 | 63.71 | 36.63 | 95.70 |
+| Melception | 44.49 | 73.79 | 47.58 | 96.66 |
+
+Run [Sampling Tool](#sampling-tool) to see Melception and MelGAN in action.
+
+# Training
+The training is done in **two** stages.
+First, a **spectrogram codebook** should be trained.
+Second, a **transformer** is trained to sample from the codebook
+The first and the second stages can be trained on the same or separate datasets as long as the process of spectrogram extraction is the same.
+
+## Training a Spectrogram Codebook
+To train a spectrogram codebook, we tried two datasets: VAS and VGGSound.
+We run our experiments on a relatively expensive hardware setup with four _40GB NVidia A100_ but the models
+can also be trained on one _12GB NVidia 2080Ti_ with smaller batch size.
+When training on four _40GB NVidia A100_, change arguments to `--gpus 0,1,2,3` and
+`data.params.batch_size=8` for the codebook and `=16` for the transformer.
+The training will hang a bit at `0, 2, 4, 8, ...` steps because of the logging.
+If folders with features and spectrograms are located elsewhere, the paths can be specified in
+`data.params.spec_dir_path`, `data.params.rgb_feats_dir_path`, and `data.params.flow_feats_dir_path`
+arguments but use the same format as in the config file e.g. notice the `*`
+in the path which globs class folders.
+
+```bash
+# VAS Codebook
+# mind the comma after `0,`
+python train.py --base configs/vas_codebook.yaml -t True --gpus 0,
+# or
+# VGGSound codebook
+python train.py --base configs/vggsound_codebook.yaml -t True --gpus 0,
+```
+
+## Training a Transformer
+A transformer (GPT-2) is trained to sample from the spectrogram codebook given a set of frame-level visual features.
+
+### VAS Transformer
+
+```bash
+# with the VAS codebook
+python train.py --base configs/vas_transformer.yaml -t True --gpus 0, \
+ model.params.first_stage_config.params.ckpt_path=./logs/2021-06-06T19-42-53_vas_codebook/checkpoints/epoch_259.ckpt
+# or with the VGGSound codebook which has 1024 codes
+python train.py --base configs/vas_transformer.yaml -t True --gpus 0, \
+ model.params.transformer_config.params.GPT_config.vocab_size=1024 \
+ model.params.first_stage_config.params.n_embed=1024 \
+ model.params.first_stage_config.params.ckpt_path=./logs/2021-05-19T22-16-54_vggsound_codebook/checkpoints/epoch_39.ckpt
+```
+
+### VGGSound Transformer
+
+```bash
+python train.py --base configs/vggsound_transformer.yaml -t True --gpus 0, \
+ model.params.first_stage_config.params.ckpt_path=./logs/2021-05-19T22-16-54_vggsound_codebook/checkpoints/epoch_39.ckpt
+```
+
+### Controlling the Condition Size
+The size of the visual condition is controlled by two arguments in the config file.
+The `feat_sample_size` is the size of the visual features resampled equidistantly from all available features (212) and `block_size` is the attention span.
+Make sure to use `block_size = 53 * 5 + feat_sample_size`.
+For instance, for `feat_sample_size=212` the `block_size=477`.
+However, the longer the condition, the more memory and more timely the sampling.
+By default, the configs are using `feat_sample_size=212` for VAS and `5` for VGGSound.
+Feel free to tweak it to your liking/application for example:
+```bash
+python train.py --base configs/vas_transformer.yaml -t True --gpus 0, \
+ model.params.transformer_config.params.GPT_config.block_size=318 \
+ data.params.feat_sampler_cfg.params.feat_sample_size=53 \
+ model.params.first_stage_config.params.ckpt_path=./logs/2021-06-06T19-42-53_vas_codebook/checkpoints/epoch_259.ckpt
+```
+The `No Feats` settings (without visual condition) are trained similarly to the settings with visual conditioning where the condition is replaced with random vectors.
+The optimal approach here is to use `replace_feats_with_random=true` along with `feat_sample_size=1` for example (VAS):
+```bash
+python train.py --base configs/vas_transformer.yaml -t True --gpus 0, \
+ data.params.replace_feats_with_random=true \
+ model.params.transformer_config.params.GPT_config.block_size=266 \
+ data.params.feat_sampler_cfg.params.feat_sample_size=1 \
+ model.params.first_stage_config.params.ckpt_path=./logs/2021-06-06T19-42-53_vas_codebook/checkpoints/epoch_259.ckpt
+```
+
+## Training VGGish-ish and Melception
+We include all necessary files for training both `vggishish` and `melception` in `./specvqgan/modules/losses/vggishish`.
+Run it on a 12GB GPU as
+```bash
+cd ./specvqgan/modules/losses/vggishish
+# vggish-ish
+python train_vggishish.py config=./configs/vggish.yaml device='cuda:0'
+# melception
+python train_melception.py config=./configs/melception.yaml device='cuda:1'
+```
+
+## Training MelGAN
+To train the vocoder, use this command:
+```bash
+cd ./vocoder
+python scripts/train.py \
+ --save_path ./logs/`date +"%Y-%m-%dT%H-%M-%S"` \
+ --data_path /path/to/melspec_10s_22050hz \
+ --batch_size 64
+```
+
+# Evaluation
+The evaluation is done in two steps.
+First, the samples are generated for each video. Second, evaluation script is run.
+The sampling procedure supports multi-gpu multi-node parallization.
+We provide a multi-gpu command which can easily be applied on a multi-node setup by replacing `--master_addr` to your main machine and `--node_rank` for every worker's id (also see an `sbatch` script in `./evaluation/sbatch_sample.sh` if you have a SLURM cluster at your disposal):
+```bash
+# Sample
+python -m torch.distributed.launch \
+ --nproc_per_node=3 \
+ --nnodes=1 \
+ --node_rank=0 \
+ --master_addr=localhost \
+ --master_port=62374 \
+ --use_env \
+ evaluation/generate_samples.py \
+ sampler.config_sampler=evaluation/configs/sampler.yaml \
+ sampler.model_logdir=$EXPERIMENT_PATH \
+ sampler.splits=$SPLITS \
+ sampler.samples_per_video=$SAMPLES_PER_VIDEO \
+ sampler.batch_size=$SAMPLER_BATCHSIZE \
+ sampler.top_k=$TOP_K \
+ data.params.spec_dir_path=$SPEC_DIR_PATH \
+ data.params.rgb_feats_dir_path=$RGB_FEATS_DIR_PATH \
+ data.params.flow_feats_dir_path=$FLOW_FEATS_DIR_PATH \
+ sampler.now=$NOW
+# Evaluate
+python -m torch.distributed.launch \
+ --nproc_per_node=3 \
+ --nnodes=1 \
+ --node_rank=0 \
+ --master_addr=localhost \
+ --master_port=62374 \
+ --use_env \
+ evaluate.py \
+ config=./evaluation/configs/eval_melception_${DATASET,,}.yaml \
+ input2.path_to_exp=$EXPERIMENT_PATH \
+ patch.specs_dir=$SPEC_DIR_PATH \
+ patch.spec_dir_path=$SPEC_DIR_PATH \
+ patch.rgb_feats_dir_path=$RGB_FEATS_DIR_PATH \
+ patch.flow_feats_dir_path=$FLOW_FEATS_DIR_PATH \
+ input1.params.root=$EXPERIMENT_PATH/samples_$NOW/$SAMPLES_FOLDER
+```
+The variables for the **VAS** dataset:
+```bash
+EXPERIMENT_PATH="./logs/"
+SPEC_DIR_PATH="./data/vas/features/*/melspec_10s_22050hz/"
+RGB_FEATS_DIR_PATH="./data/vas/features/*/feature_rgb_bninception_dim1024_21.5fps/"
+FLOW_FEATS_DIR_PATH="./data/vas/features/*/feature_flow_bninception_dim1024_21.5fps/"
+SAMPLES_FOLDER="VAS_validation"
+SPLITS="\"[validation, ]\""
+SAMPLER_BATCHSIZE=4
+SAMPLES_PER_VIDEO=10
+TOP_K=64 # use TOP_K=512 when evaluating a VAS transformer trained with a VGGSound codebook
+NOW=`date +"%Y-%m-%dT%H-%M-%S"`
+```
+The variables for the **VGGSound** dataset:
+```bash
+EXPERIMENT_PATH="./logs/"
+SPEC_DIR_PATH="./data/vggsound/melspec_10s_22050hz/"
+RGB_FEATS_DIR_PATH="./data/vggsound/feature_rgb_bninception_dim1024_21.5fps/"
+FLOW_FEATS_DIR_PATH="./data/vggsound/feature_flow_bninception_dim1024_21.5fps/"
+SAMPLES_FOLDER="VGGSound_test"
+SPLITS="\"[test, ]\""
+SAMPLER_BATCHSIZE=32
+SAMPLES_PER_VIDEO=1
+TOP_K=512
+NOW=`date +"%Y-%m-%dT%H-%M-%S" the`
+```
+
+# Sampling Tool
+For interactive sampling, we rely on the [Streamlit](https://streamlit.io/) library.
+To start the streamlit server locally, run
+```bash
+# mind the trailing `--`
+streamlit run --server.port 5555 ./sample_visualization.py --
+# go to `localhost:5555` in your browser
+```
+
+A Google Colab demo is coming soon
+
+# The Neural Audio Codec Demo
+A recent [ArXiv submission](https://arxiv.org/abs/2107.03312) show-cased a VQVAE architecture with adversarial loss,
+called SoundStream, on lossy compression of a waveform with the state-of-the-art results on the 3 kbps
+bitrate which works on music and speech datasets. Since our approach includes sampling from a pre-trained
+codebook, we can employ our Spectrogram VQGAN pre-trained on an open-domain dataset as a neural audio codec without a change.
+
+A Google Colab demo is coming soon
+
+# Citation
+Our paper was accepted as an oral presentation for the BMVC 2021.
+Please, use this bibtex if you would like to cite our work
+```
+@InProceedings{SpecVQGAN_Iashin_2021,
+ title={Taming Visually Guided Sound Generation},
+ author={Iashin, Vladimir and Rahtu, Esa},
+ booktitle={British Machine Vision Conference (BMVC)},
+ year={2021}
+}
+```
+
+# Acknowledgments
+Funding for this research was provided by the Academy of Finland projects 327910 & 324346. The authors acknowledge CSC — IT Center for Science, Finland, for computational resources for our experimentation.
+
+We also acknowledge the following codebases:
+- The code base is built upon an amazing [taming-transformers](https://github.com/CompVis/taming-transformers) repo.
+Check it out if you are into high-res image generation.
+- The implementation of some evaluation metrics is partially borrowed and adapted from [torch-fidelity](https://github.com/toshas/torch-fidelity).
+- The feature extraction pipeline relies on the baseline implementation [RegNet](https://github.com/PeihaoChen/regnet).
+- MelGAN training scripts are built upon the [official implementation for text-to-speech MelGAN](https://github.com/descriptinc/melgan-neurips).
diff --git a/SpecVQGAN_Demo.ipynb b/SpecVQGAN_Demo.ipynb
new file mode 100644
index 0000000..89a6d45
--- /dev/null
+++ b/SpecVQGAN_Demo.ipynb
@@ -0,0 +1,551 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Taming Visually Guided Sound Generation 🖼️ 👉 🔉\n",
+ "This notebook will guide you through the visually-guided sound generation.\n",
+ "We will condition the generation on a set of visual frames extracted from \n",
+ "an arbitrary video.\n",
+ "\n",
+ "[Project Page](https://v-iashin.github.io/SpecVQGAN) • [Code](https://github.com/v-iashin/SpecVQGAN)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "try:\n",
+ " import google.colab\n",
+ " IN_COLAB = True\n",
+ "except:\n",
+ " IN_COLAB = False\n",
+ "\n",
+ "if IN_COLAB:\n",
+ " # Cloning the repo from GitHub\n",
+ " !git clone https: // github.com/v-iashin/SpecVQGAN\n",
+ " print('Some packages are not installed. Installing...')\n",
+ " # Installing the environment\n",
+ " !pip uninstall torchtext - y # otherwise fails on PytorchLightning import\n",
+ " !pip install pytorch-lightning == 1.2.10 omegaconf == 2.0.6 streamlit == 0.80 matplotlib == 3.4.1 albumentations == 0.5.2\n",
+ " # We need to restart Colab Runtime because we installed new packages\n",
+ " !for i in {1..20} do echo \"Packages have been installed. Please rerun the cell.\" done\n",
+ " import os\n",
+ " os.kill(os.getpid(), 9)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Imports and Device Selection"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import time\n",
+ "from pathlib import Path\n",
+ "\n",
+ "import IPython.display as display_audio\n",
+ "import soundfile\n",
+ "import torch\n",
+ "from IPython import display\n",
+ "from matplotlib import pyplot as plt\n",
+ "from torch.utils.data.dataloader import default_collate\n",
+ "from torchvision.utils import make_grid\n",
+ "from tqdm import tqdm\n",
+ "\n",
+ "from feature_extraction.demo_utils import (ExtractResNet50,\n",
+ " extract_melspectrogram, load_model,\n",
+ " show_grid, trim_video)\n",
+ "from sample_visualization import (all_attention_to_st, get_class_preditions,\n",
+ " last_attention_to_st, spec_to_audio_to_st,\n",
+ " tensor_to_plt)\n",
+ "from specvqgan.data.vggsound import CropImage\n",
+ "\n",
+ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Select a Model\n",
+ "The model will be automatically downloaded given the `Model Name`. \n",
+ "Use the following reference to select one:\n",
+ "\n",
+ "| Model Name | Info | FID ↓ | Avg. MKL ↓ | Sample Time️ ↓ |\n",
+ "| ---------------------------------------: | --------------------: | ----: | ---------: | ------------: |\n",
+ "| 2021-06-20T16-35-20_vggsound_transformer | No Feats | 13.5 | 9.7 | 7.7 |\n",
+ "| 2021-07-30T21-03-22_vggsound_transformer | 1 ResNet50 Feature | 11.5 | 7.3 | 7.7 |\n",
+ "| 2021-07-30T21-34-25_vggsound_transformer | 5 ResNet50 Features | 11.3 | 7.0 | 7.9 |\n",
+ "| 2021-07-30T21-34-41_vggsound_transformer | 212 ResNet50 Features | 10.5 | 6.9 | 11.8 |"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Using: 2021-07-30T21-34-25_vggsound_transformer (5 ResNet50 Features)\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2021-09-05 15:35:01.927 WARNING root: \n",
+ " \u001b[33m\u001b[1mWarning:\u001b[0m to view this Streamlit app on a browser, run it with the following\n",
+ " command:\n",
+ "\n",
+ " streamlit run ipykernel_launcher [ARGUMENTS]\n",
+ "2021-09-05 15:35:05.667 INFO specvqgan.modules.transformer.mingpt: number of parameters: 3.046851e+08\n",
+ "2021-09-05 15:35:09.801 INFO main.specvqgan.modules.losses.vggishish.transforms: Assuming that the input stats are calculated using preprocessed spectrograms (log)\n",
+ "2021-09-05 15:35:09.802 INFO main.specvqgan.modules.losses.vggishish.transforms: Trying to load train stats for Standard Normalization of inputs\n"
+ ]
+ }
+ ],
+ "source": [
+ "model_name = '2021-07-30T21-34-25_vggsound_transformer'\n",
+ "log_dir = './logs'\n",
+ "config, sampler, melgan, melception = load_model(model_name, log_dir, device)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Select a Video\n",
+ "We extract visual features and display the corresponding frames.\n",
+ "\n",
+ "**Note**: the selected video is trimmed to 10 seconds.\n",
+ "By default, we use the first 10 seconds: adjust `start_sec` if you'd like to \n",
+ "start from another time.\n",
+ "If the video is shorter than 10 sec it will be tiled until 10 sec."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Video Duration: 10.024\n",
+ "Trimmed the input video ./data/vggsound/video/-Qowmc0P9ic_34000_44000.mp4 and saved the output @ ./tmp/-Qowmc0P9ic_34000_44000_trim_to_10s.mp4\n",
+ "Raw Extracted Representation: (215, 2048)\n",
+ "Post-processed Representation: (5, 2048)\n",
+ "Rendering the Plot with Frames Used in Conditioning\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAACCCAYAAACpZ6m1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9WZBkWXrfB/7OuZvvsa+5Z1bWXtVV1SuaIBpAo7EQhiEBkQREihJnZGNjNjMamwdpHiSzGZPZ6GVmjCO9SByKi4YSKSMHIMjuhhob0d3o7uqlqrOqa8+syjUyY4/w3f1u55x5OPd63PDwyK2yAJohv7KscL9+/fpZv/N9/28Txhge02N6TI/pMT2mx/SY/qKQ/PNuwGN6TI/pMT2mx/SYHtOfJT0Wfh7TY3pMj+kxPabH9BeKHgs/j+kxPabH9Jge02P6C0WPhZ/H9Jge02N6TI/pMf2FosfCz2N6TI/pMT2mx/SY/kLRY+HnMT2mx/SYHtNjekx/och9kJuFEEZKByGgGCFvjEGI/E3xjxn7vhzdZL9vAJF9V4zuK4bfi8L/hAAhDu4r3DH2W+P3PFo62oZjyEwahYf8zeILI8Yu3qsdoFRqvyIFmGKbTD4Nh94enTuBQNirxmCyzwUCO4H2IfncHbRXjN4LeZys/bAj9GDzLI59c49nPYJ5PDR/+bvj0kyMNcVoQ6pSHMcZm7uxvTd65PhzRWHNju+9wxNvCouh2GYhJPe37Cftx+PueTASh//3YGTMI9mHR9sy/jviyPU0Tez+EeIo3yw85+CzAhMVxb13HN80o+dNnjtx/zzrnvTxnjPO6+9OZvIyKvTFcRxOnjyBEJI7d24Tx7HlSYfuf5DfPExaK3zfo95oHG3b+Lvi/BnLC8MwIgxDjNaF+cubJA49obg28nHK7zs6f49+f/150gO1+Li1bMbfGtI0Adg1xiyM3/5Awg9ArVpHSjmaDK01juOQpinGGIwxaK1H/yxzFpZxA0opPM9Daz36vud5o2cKIYjj+OAQFQIpJVJKXNfF87ziKHCw+ceFn8MDZBlPzlSy74jDn09iEMV25H0olUpUKhWEEHS7XdI0PXRv/jp//6hyKU1q393abN/YsWi2dgCD7wfITAjRWiOEGM1Vfk0pNbqW91tKSZqmo7nI51kIUZgTgVJ2zvPfKM6f7/uj7461mAcXLQ7PcT4Od2Pyxc/G77vb/Bf/3bVF9zhgxtt4v+sijiP2m7s06lOH1rHWejQv+T5L0/TI3sv3W77X8s+MMXieh+M4GGNQSqGUOjQW+fz5vo/ruvfRdsnd53Py3pw8doXDPLvnQQ/y4lg9aprYDnO0fzu76wRBgOf5h9pT3Hv56yIfNcbgOM7os5z/5O+FEPj+wTOTJDnUrvG5e8hecjCXk+bu8N9J9xTbVDw77kXH7bniOgiCgP/0P/1P+fKXv8z/9f/2X/Cd7/wpWh0WMsfXzYPw4/6gx5lzJ/nlX/2lg3ZhwOTCzAGPPzj/DEI7YCTb27v86Ps/ZGtre8Rb8zblfBUYzX1xnKSUOI6D67qHxu1B2n/o3OP++eP93H83etAz7373tbE33/03jRUbjdZsbd9GG31z0v0PvCOMMaRpiuu6OI5DFEUjpqqUIgxDgEMH57gg43kecRyPnpcz8fyeSXR3BjmxpcVvF94XYY7D/TqOhBBUq1UqlQrT09OUy2XOnj1HtVrlrZ+8yd7ePv1+nziO0Urd9Ri/n0XxMMz9HneNXimlMMbguu5oM3qeh+d5hGE4Enzye4pzlx+k+SFbFHbtvYfbNVnY+LNJqjm+6cc/+yToXmuoyCgfpg3FucuVBM/zcF2XJElIkmR0T1FYz3/XcRx83ycMQ4QQo3vz9t2NAX1SY3Z3mizQjhAT++Gx337Uysf9U1EJykRBY0iSZKTE5YJKfrDlfDQXPnO+mR96Wmt83z+kmIzzTCnlIaH3z7K/xty/8F9cc8c+8S5zV3xOHMdcunSJX/mVX+app57i1e99D4xB66PffZj1UESyc/y3eJocaZsBmaNyAmZnpzl3/hxaG5rN5mieJ43Bn88e+3eH7jbX97rvYeihhB9gxGiBkXaSa4/55s21DaXUiPEOh0PAbtQkSQ5poZMWZ7HzkxCDI1Dxodc58zwMKYJmkgBUpLwP09PTSCFpNOosLi1x9uxZlFJ0210+uHmTvb19Sr5Po1ZjOBjQ3G8SpwnqY0zQcYtg/Pr9bZbDaFRRw8yF2JyJ5gJNrnHkzBQgCILRM1zXHaFzRSTIQvH5POZmsFwLk4DGmPGD7HAb70331hDyuSseJuNoxv3QpPF+2I03zuzu5wDI1ByKazXfY8Wxz9uVa445kloUTKWU1iSQKSBFlKDIjMf7m98/3o/x19k3KM7l/fLy+9VM7c3cl+BTfPbd5ux+5/NBmLA48uao8pHPS/7cIi/Nrxf3Xt4P13WtGcUcfuZxa/N+BIzjyH737vccCD2GAxPs8Yjsfa37e7SvKPilacra2hpKJTz15JNUa1W63b7FHw1ofW/E9u6NAIHJDP4HyMLorzlQp0W2Ng8sn5qS73Dq1CrhcEiaJiiVkiRFlEiP5u5eY/Mw/fizF/wfjh64nfm6OniA/XPwRAx3R3sfCgvNEQGl1JGNKoQYoUL54VnUTOBgo6dpOtrs+UI43L/7O9yPXzSHhaCDBx//tJzZl8tlTpw4gVaane1t2s2UcDBgZ2sLjEFpRXOvyaDfRwqJ57gIASZNQeuRK/mjWnwPwjQOfa+wU4sIQA6jj89Rfi1HhvKNWTw0Xdc9hELk1w9QvlzwyZnh3cwgDzo+I1Zz7B35GqxWqyOUKhfWJv079pfGDuV8HD5JhjJRwOeAURbRnHzv5d/J5y2/p7ifisJgce86jjMShI5DX+9/zU1GVe/rmxPQiuJ7x3EOlKzMtCqkGKEqk7T8e83vJ0PmsFCW/b4VdmwfcrS1uKZygb0ouBf3ZL6OPc8bCblFvpnv46KgetAEc2h8/yzG5EEVjXvReJtzgQ9gd3eXVqvNhScucP78ed59913SVIOWCDFZsH+IFhS82Yqvc8o8IoXIWH/2iTDMzDS4ePE8xmjiOKLT6R3qx6Q5+7OiBzWD/XnT6DQrIHJFEmbS3ZPpoZCffLPmm62oPRY32HEQbC70ACMtNYeExzfqo6BJGqo4NEqHmYLv+5w8cQKVKra2txBANIxp7e8RJwlG28PckRJpAG1IpcSRAmU0RjjIIECLRw+9F4WgB32mNgfmkPHnFJnJ+Hzmc5Iz2PxQzQ+koqmlyLQ/OToq1Oa/HwQB58+fZ3V1lWeeeYZ3332Xjc1NwuGQOI4Jw3CEeuVIV/H7R37pER8U479zX88vtLEo2IyjBvn7otAzfgglSTJqg+d5o31a9AUq3v/J0NG9N05CCMrlMr7vMz09TaPRwHVdfN9HK8WgP6Db7dJst0am9uPMHA9zrdiO4+55EA29iKjm8zO+n3IqzkNRsM0VDGAkuBb9RP5d0fKLiGFRoB5HO8YRj3GedK/+5Ou43W5x+cplvvjFL3DhwgXeeecdVKoAeez+vv+xsoJO0ZOtiIeNY2Oi+FwhEEbgOJLZ2WmeeOI87XabwWBAmiqM0WhtDvHjT5YO1tJB8NHBfI2vw49z1jwqmriXivNIEf05fJ+4R5MfAvk5OBAPfD3M6ACFwwwjF5DG0YPiBskPz6Lj9IPYQh+cUU9mvsZYB9DZ2Vn6vS6t/aZ1IDUKnaSoNEEaCHzr4Ou5Hq6UGK2IoxClUrRKSZFgNDgOosAA/rzIGDOK0iou9Bw9AA6ZUvIFNy7I5J8VIXpgpJGOb5I/S81BSsnU1BRPPfUU1WqV06dP8/wLL9CYmuLtt9+mVquhleLdd99la2vrkNad9wf+bA6QBxHuD9pjDu2XfO/lNIlxFX+nqKTkzykenvnrSb//aJWRews+AJVKhV/5lV9he3ubOI7pdrt0Oh27/tKUcqXCwtIiqydPsLGxwfb29kiwGwkMCPQ9zTb39/nD9n/88C3ukfxv0fcqvz5p740HIeR7sej0POn3iybfT5Jsu1yCICAISlSrVcrl8ojXhGFIv98fzVNRaRoXdu53HxpjGAyGXP3oKr/0S7/I+fPnqVarRFFrpDQUkegHJYMVaBxjULlJTwhExlOLDhRS5CZ+g6BgajcgJMzNTnP61Ema+0263R5RHCMESClQ6pNFk/PpN8bguA7lUgXf9ymXy6OAlTRNGQ6HI5eWXEH8JIIFPhaZMXQ1v2aOXrobPQTyc1i4yQ+PfKKLG60IPY9rAPnrHM4tvv7k6Sg8n/elWq2Spil7O9u4AlSqSNMYT0gWGw3mZuc4eeIk5XKZSqWC60jCQZ/NrU3urK+zsb2JilKSNEUrjeu5o76O/96D0sNpLpNpHKUrztv479zNHJIztqIQ+yj6+iDkeR6nTp1iaWmJ3d1dtDGUymV+fOkSW1tbPPvcc/iex49++EPCMMT3/ZEAEMfxxCinux0mD3I9p0ljcr9Ikyls7HEkrqhITPqd4rWi8FNE/CahSX9eJISgVqtx9uxZzp07x7PPPotSih/96Edcu3aNVKUgBJ1Oh729PRzHYXl5Gc/zuHPnzqFAin/XaFxpLF6/196etPdyoT1fx3/efXYch8XFRVZXT1Cr1YiiiFqtxubmJv1+/9D6ysehaFrP6V4I3vh7rTVra7dI04STJ08yPz9Pu9VBqVygmuy7dL98ShiQ2mCkxAibciA/fAUgc2FbCJCH9+HoN4TBRXDq1Crtdpvbt2+zs7uHlM5oLD5JsvxO4Ho+c/MLrC4vMzs7O1Jac/7darVot9t0Oh0Gg0GGUqXH+gU+Crof5HV079h3jiBvE++eTA/t8DwOV07S+iehALn9ehyByKXP4mE7/pvHvX+A1jPBSjh6nuu6uK5Lt9NBpSlCQBpHOMC5E6t88ZWXObt6koWFBarVsjX5aEWUROzs73Jt7RaX3nqbj67foh2mIKT1T7Di/UO2udD6RyDwTIKBx7Xb4gE7rn3mB2WueRZ9h/KD+JPsg30GWTvtnK2urjIzPcPt23f49Cuv8PKnX8Hzfa5evcqFC+fwPZcoHNJuNYnj6IimnTuASyEQhZDS4+DeR8UE7uc5o/nisDJxHJxf/N74/ssd1YvO0MDIv+vRtPn++5SzriIKvLS0xKnTp3nq6aeYX1zgzTffZH39DjvbOyijrL+FPAioCMOQa9euMTs7y8LCAhsbGxY91mb0E4+OfxzXj/u59/D3JiFAcNTkk/PCcb55nOB6L5Tuwdo8jnoV5+2gvUKA47isrCxz5swZjBHs7++zsLDAL/7iL9JsNvnWt75Fq9VCCEEYhiMUKDdDF83sDyqAK6W4ceMmzWaL1dVVLly4wI0bVhiyyvokvn//JmdtDEbbdSekAHEQCCKMGZlhBAIhOZRnyM4lgESZFN/3WV5eptPp0Gx1sjPwaATZ+P59GMrHMw82qlTLVCo1FpeWmJ6ZASFIlIJs7HMUcXp6enQ25wJ2jtaNj9vdlMVHw+snPPeY18Ic/exuLXgo4aeYR6TYwKJmU/TfKS7q3Ekzh9mLfheT4N/x1w89oEc91A5dEEJQqVQACMOhTQoohIXYfZ/nLl7kmXPnOXtihVq1jECjjUJpGDgOYclhaX6G555+EhC8f22NfqxscistDjSFP2fNupiDqThHxXwTRdNXce7yAwoOw/B5NErR/6BIj7bPhxnv4sICM9PTrG9scPr0GZZXl9lr7vGpl16iWiuztb1Jr99hqt7gmWeeYm93hzgM0SpFFWBdozWpNggpcVxnomD4IMLKoRbf53ePfWbW6+LeK/5e8UAcF2qL+UGKDrVpmo787IQQh3yBHqRvk1ub0/H+PJOe5TgOzz7/PF/+hV+gVqty6c1L/PjNSxitRykklFIkUUwcW2g+jmMGgwH7+/ssLS0xNTXF9vb26HeKzXmUmuvDPKvomJw/Y1ygudu+y+eqmNsp97m7l+Pso+t78UgRgMD3A06fPs358+fY39+n2+2N8gtVq1VmZ2dJkoTt7W1qtRphGHLp0iV2d3dxXXeEMOTBFMUIxvtt0+bmJmtra1y4cJ6TJ0+itSIXrO9HIIfjxyhRKbHSBJ5ACMdaviSoHEXNR0IIpMh5qYPWlicqpUmUYjgMicIIr+QyPTuNxrC3s8twGOHIzOdGiCPoxschu0YkpZJPpVpjamqa06dP0+v12NjctPxP2XMKDvIL5Yps7mCfB0Xc75jZ68cpVPmIPVoyD/jIh4r2GpdKi1rK+CaeBNcWF3aapiOb9YMO8IOQOPRicptqtRrD4YAkTbLFYEMcT6wuc/GJc6yuLDI73cD3JGlqEYRUaTwUJc8hcAXTjRrzM9PUSlv0ox7aSNASzxX3uQWP0sP0/8ghZrLomAlaZo7ejM9d8Z78dc5sc6i9GIlSjEb6OG2/W3/s4+zrwA+YmZ5hbe02KyurhGHIj157nfpMgyeeeoIPr17h9R9+nySKcYxFrYb9HnEUEicxSaKIkgPn5zRJkY5DIIOHckK8G3T/sQXAY1C6497D0eit4tzk8547Oh/n7/NJCet2fMXoAAdYXlrhqaee5I0332B5dYWtnR2MgBRDqpVFWeOIaBgSR9ZcGUXRCJrf29vj85//PLu7u6OEnPcyY94vPez3jcnUUXnUrDiOdExCfHIqppTIhdXcdFb0kzxOWP+4AvhkssrsqVOnWFlZYX19gyRJqFQqVKtV5ubmSNKU7d1d2p0Op06fxnEctra2Rs72RQEv70ceBDOJjutDr9fj9tptnnvuWU6fPk2lUqYd51FVD2+GN8CgP6TT7TLjOgSukyE9B8qszBVbaa1eozMOg0oThlFMGMaEUYRRCjczD07Vp0iimDTZR2cRjOY+Unk8CAkhcFwXmfGz1dVVzp07xw9+8IODXG1ZP03GB3J+kPv++L7PYDB4YAHbvh0f68koxHHo9b3W7SFV64gZ89ivAQ8h/MjCATppIMY10PGMvkX0wDbwsAP1uOZzPwPwKEhKSb1eJ44jpJAI18UxBscRnDtzhpXlRYKST5yENozSaBxpYU9hNKQpQmsk4EqZybbW2991HFzPO6Rdf9L9mfR8KQ7PV5HxFoXSolPskWcUQuPzvhRDqMfb8En1VUrJ0vISnU6HSqWCkyVZTJMUE6d89MFlfvC977C7tQlK4wmJFBKpU1QyZNDrEcUJ2gi0hjRVo+zUWnvHCnEf5xB8EKZ26HcmCDjFZ00yVx63N8fNCkKIkQP1cc9/1JQL0Y5zkI8ocD1Wl5f48PL77OztcfXDyySpRmiDTlLSOLHResMhcRQRRwdOs/m/VqvJtevXOHfuHNevXz+EsNwP3e2+jzsecowvjo91vo+Ke2+8PblAPr73xhWWPysSQlCv16nVaty5c4fBYDCKsjxz5gyu6/LR1ausb22yv7+PXymTJon1xctQh3zujDH4vj86dO8mABUp7/dgMOTdd9/jK7/4i5w7d46VlRW6nato/fDjkj97b2+Xqx9d5bnnnsVxXZDiAGU4xD/zubQlTQaDIYPBkDCM0crgCIFXKlEqlZiaEkTDiG63w2AwJEkV2uiRuVbkiRJHYfW5iHL/qEluaZHSoVKrc/L0aZ578QUWFhZYWV0lCIIR8tNqNm2SXq1JkoQoiogiW5ojT20yHtB0b5R40tgfNZ3ejYw29w0SHd0Dd5/7h0J+xqH34iLN84aMw/FFLawI3xbNLXkHJmksfxYbPIljkiRhenqKpYUFTBLT2dvhzKmTTE9NYYxhZ2ebfq+DFNZ7vxyUiKOYKAzp9wbsbu/Q7nSJ4wRjBNroI8LBo+rHg2ow+f3F6KbiAi4id0WUJ389fniOo3jjbSrO3aN26AuCAAF0u12mZ2cZDCPrByI1u1ub/MHXb9Fs7lIOfE6trFItlax2qRWtToutzS02t3cYhgloEDoHBY/393mQ8T5Ok/k4lI/jcRnRi9FbxbEvCnLj8zduapkksBavPyqyh7Ztq8RGCe3euY1QM0yXS7hOQKoMwwH04hSTKKIwREUxaZSMtNZitJoxhuvXr/GXf/pnqFardDqdR9be+6XJc2xG+y9HpHKeWBR2iodLLtiMl4MYFwjuxVc+Kd4phKRUClhYmGdvb484jpmamjoURXr69GlOnj7N7Mb8yN8nDxTJ13Iu7OTjUfQlvNd6K/ZJa8OtW7cY9PvMzs6xsLDAzZu3GQ7C+167E8fIGMIo5oMPrlCt1jl/4RzSk7i+NzJ5ke8jDQobINPp9O0ZoMF1XPxyMIqMHqGS0lCrVWjUq6RpQr+Xoo2BDI2RwrGh86bIO52jbTyG8nVVLpd54cVPcfrMaYwxDOOIC09e5Fn/OVSc8IPvf58kE0TjOB4JPsPhkMFgcOh5cDip8aPiCfe/PscTFh+mw8jq3Z/0EMLPgbNdPpm59jgJLcgX8aRkiOM5Yo6D8j9pyjdekNXsmpudZXlxgfbeDiKNWFyYZ3FhjpKQqEqJMJxiMOiBFKTKhgcOhiGO41AulSgHpaxvIQiBVofNCg/ar+MWxv0eSuOf5wdG8aDLD8mi4FrM5zOuqR5KOldow7jw80mQEDYqb3d3lyROKA1DEC5GK6J4QK+9R6Na4fknn2BudoZauYwr7OEyHA4JADfVeMLh9tYO7W4PrQXS8XCyRHT1ep1er3fkQBrv48eh+3nOwRAe7LOieTG/lu+7fC0XEaBxoTbfj+OaXP79cWXlUVK+rtJUoXVkNXNjUEOPCydWef7Ceer1Kr4ToBT0en32m/usb22yvZeihgNSYbVhpTUCWJhfoFavcePGDYw23L59exTFUuzXx6GPg/gV0f+i4FrM3VNMNgmHMz6PC6PFmlDHrctPnncKZmasY+xgMGB6enrEzy9fvszly5c5e/YsX/mlX2Jhfh5jDL1ej3KpzKc//Wk6rRabm5sHjukZjUcF328/jNGsr6/T7fVoNGo888wzXL58hX6vjxBHUbQHUhyNodvt8e6776KNZnF5iem5KeuuQUEpMYY0iRgMQuIoAazPTBCU8P0ArbUNJc/cBSQwPTXF6VMnqVZr7O7u0e8NiKKIJE0LiO+h1nDfqEn2/ZMnT/LMM08jpGR9Y4NKrcrC4gIozYdXPmR9Y4MwjkkyoSeKItKsXE6apGhzGI3MX39cBfG++pCn0B67OhnVOTzP92rLQ/v8jL/Oa8+MCzJpmhIEQTZwOXN2qNcbVCplXNdlf3+fNE3p9XuH5vV+haDjOylGC2d0xxE75Ai/ZH5+kdWTpwgHQ/p9C1dWKlWmp6YIPB8Tx8RJZruVkqBcRmKItWK/1cItVVleWmGYwNSdTTaaPRvlJcCREpE5Kj4sHfTTFODco5shv02IAoJR0P7yw3McQs+FmryNRa364LlWe5uamqJUKtHtdun1eiRJMgoztr99vA337n07oMmH1wFi2O8PssM/xegYjSEZdlmcafDKC8+xtLiAgzWbGK1JE/CUCyUXVQtQaY1Op0u3O0AZcKVD4AVIx2U4GB5xLH4UdK/n2M8PFAR7uz50eI6brXJNu3g9RxtLpVLh2eC63mjulFKjwry5CeI4ReRR9PVA8MnNHRkqoVKWGnVefPZpnjl7hnLJw3esGXMYRfT60yzN1rh+0yOQho29DiYdYLQCBLMz0zz19NO0Wi263e4ooq04PpMY9b3aO972+xuL43jVwd4bDxrIBbViAsTx0jPGWLSlWq1Sq1XxfZ92uz0yTRT9fsb32KMQ/MbXnOd51Gp19vb2DiFPxQih3H9ESMnbb7/FtavXcIRgdnrGXs/8W5xRAQnr83JQHqLgsC4O2jJxbAW0Oy02Nu6wsvIpLlw4S6nkYoziQYWFo9dBpbC70+Tdt99D4FCt1fB9m9XZaE0Sx8RxTBxFaA2+Hxyk1ECSRCFGKTyjKZfLuNJGXlZnS8xPTdNZ6NI70afZ3Gdnb49Wu00UW99TISCvCG9G/b37eszXq9Z6lOm+1+vhOg7CgOe4fO/73+XDKx9aYStJiOKYKLN+6CSFPApN65Ev0t1QxMPX77XmJqOUhR5MuFb87qTr49aF4+6z9LHMXvlgFJMT5iGoObSXb2atNbValfPnL9DpdPj85z/HSy99ipde+hR/8iff5MqVK3z7299mfX19FIVSLpeJouhwd445QI8fpINEU5PJ3mMQeEGJmbkFdtU2zU6HOFY06mWqpTLCGFxHkDgOGuvT40gXIa1VNowSpBriBJpSKWB6qkG1tEeobP/n5udRSrG3t3fXsb0XynNwz70P5kzmyXp5AH8XQ2RzFCB/nRdPLKJK+aH15JNPY4xhYWGBn/qpz/PlL/88ly9f4cc//jFvvvkmb775Jr2edTLMK7gX5+9ewuyDaK728yyZGCBJESZleXGa55+8yOrCHL5wEKlBoTFopO9RcwW+VAihwGiazTI7+y5pmuBmfl9aCCuIc/f23q39d7unOA5Hn32UuWh9YDbJGVr+rDx8HQ5SNRQ/zw/U+fkFlpaWGQ6H/MzP/DSf//znmZ+f59vf/jYffvgh3/zmN9nd3R2VXqhWq/T7/dFzivmBHpaKpg67xnLBxDA3O8XTFy9w8cwJyr5EGGseGIRDeoOAkgdCRfiOBLOOimJUHKG1orm/R5okrCwvE0URvV6PWq1GEASHBPI/EzLjbw8z8Xx84cCJOX/tui5RFB1C38AKPc8//yy9Xo+nnnqKz3zmFb70pS/x/e9/n/fee48f/vCHfPDBBwyHQ4SwUavjJV2OK33xMCSlpFaroZSi3x9QKgWHhB5jNI4jieOQO+u3GEYRO1vrCJMSDkOu7+9alMukBL6DQ4k0SYlTRVIomJwLNfdDAgjDAc3mLo4jWViYo9FoZMjBg+ceO8RrjQAtSJOU3d19rlz+kKmZaSu0OoI4DhkMBkRhhON6lEulDO3xUWmKShIcFL7vcvbEKV566WUcBGu3bjDo92m1W+zs+uw6hrJM8VxDpezT6/UZDkM7tloTJ4mtIIDkfgcmR5s63S6NRoNarcbS0hLD4ZA76+t0Ox0r/MSx3ZdZe7XSoA2udPBdlyRNSZU+hCTn4/PgPOFe5tnDfk1FxTf/vpiYvnmcbz7i2l7jGmERZs/hsFz4yRGGHLoNgoBarcZgMGB+fh6tNR99dJUrV66MDs38e3n+ltu3bxNF0SPauMcdula6DYdDBr0u+3s7NPf2UOGQ+VpAvVqhVi5RcgTVcoVKrU4ShfiuwzAJcX2fWq2GdHzcICAGZmammJ2dotkbEKWKbqeDlwkEd5OeJ7evWCwUGNk9708QHAl/BUGmuGjzazl6UDR55UIMwNTUFP1+n2q1SqlUYm9/nzfeeIPt7W2EEKNCtbnzuOd5Ftp+xFDowZhgc28IK75KAVPTU8zMTOE6Dp6U+I6LWwoQQuO7DgiB25IYoQmHIb4UNMoBaZTgCYHnSGIMSRIfMi88ynbf7z3jfyeZp4p1oHLGlCN3eQkEYwy1Wm2E9iwvrxCGIe+8+w7Xr18fRUsVM60vLS1x7dq1Rw9jH2Jy2bVsrU1PT1Etl/EdG0SgZKZZK8UgCJht1EljhRE+vlfi8rVrRN0O3WaTO2u3IUMk8mr3QRCwv7//SPpw/4LteNHkw3NXRF/z6zkPzYWffD5zRMh1HaamGoRhyNTUFEIIbt26xVtvvUWr1Ro5qeZ7b2Zmhl6vd0jx+LhmsPFDrlotE4ZDjFGZr0gCFmfFGIVAsr2zwY9+9Cqu5xH2O0iTErgGJxAY3yNJBGkqEVSI45QoSRhGCVEYZoKbpgADjdHhi0LYiK93332HL37xC0xNTXHy5Enef/8KcTy5bMOkOR1HL4r3GgwozcbGBu++9x6JuogfuCht95uUDoFvs1vnJk2trJIlDXiOw8nVVaaqVYRWLMxMsadi2nsxnk4IhCZwBI1yCWkEJdchqVYQUjIYRuy3WoRxirKaUNauI0MxNi4W8el1e5w8cZJWq41AoFJFmAlWud9VEQEWGeojheDUyVMopVhbv4MRB3XVHmZN3W0fFS0bWeuP8kDseriv/fhJODwXfUPyhuWbuZgID+DcuXMjtGFlZYVWq8nVq1etk1wSEUcxX//61/n85z9PksQj7cH3fS5evMjm5uahSvCflC1ba8XNm9fZ3dmi024TDQc4KsWRgkq5jOu49gD1PBzXJQ0CtEoxEkpBgO97COlQKgf4cWgr+Oa5JjC0W20czz2U2XUSHRZyiht1MtJz/4epvS8XRvPr+dyNlyFRSjE7N8vqyip7e3vMz88Dhtu314iiIefPn+WD9z/g93//9xFCsLq6cojZnjlzhn6/z507d4DDc3c/zs+TBES74UCp1CYwQ+MHFVzPQ0iJEZkPi+MgHInjuExVq1RLASpOEALiJCGOQra3NtndbjJTr+P5NaRYJ9KGOIkIs4Pk4Dc//pob78/xEPLxGk3elvF6TkXFIxd2fN/jiScuEobh6EDc3d3m9u3btNttut0OH3zwAd/61rf40pe+RBgemPnq9TqnT5/mo48+OiQUP6jQXuxrcQyllDZxnBE2UtKAURpPOnhC4hiFMNhUBL0BvU6bqD8ArSkHAYuzPr5XZjgMaXc6lEolVpaX0VLS7/dpt9v4vj8Rdfw4dL/PMEYfEXaM4YjGXPyXz1/+2cmTJ5mamqLVarG8vMxgMGBt7RbLy0vUahV6/R5f+9rXuHDhAsYcpAkRQnD+/Hk++OCDQwj9o6CiAJQ7xNrfsIiNkClSeiANxqQkUcjO1ibScZAYpNEYYSNoLSptE/wpnZDokDiJQIPnSdIEG1VrY8cPJQ6c3DbLw7e2tuj1ejiOQ6NhFbA4iu56YBYPXWPGBKV8PwqLL2tAxSk3btxkGA1ZWJhnbnaaRqNOqVQeuXg4jjNC3ipBCak1tUqF2ZkZXGBvf587d9botJsk0RBHGsqBR6OxjEJwe3OLOK6SprbMRBQnlF2H3WaL3jAi1dZEqAooiRBHFTWtNd1OF8/x0CnsbO3ieQH1eh1Hehh9wP+VUqg8QWjWbSkls7OzAOw294myjPjjfj9HkTU7evdLk0xex993d3PWwc13//ihkB8vC9vOOyylHF3LIV2wAz87O8unPvWpkRBTqVQolwPK5RK1ao07LZuS/tq1a7Ra7dFAlkolnnrqKb773e+OfjcPzXvUZO2ahu3tLWsTBVApjlYkcYLWtggdUuS7zAo+OpPoXRdhyOp/KYb9Ie1Oh163xzBOSJUm0QbhHAgXQhyYpHLKJ9Ym6DoY77tpKpNookaT/c2TjxVNI57nEYbhSADKhVutNJ/73Ofodrvs7OxQr9eYnp7C86zfSBTZXEe9Xo8wDA9pBBefvMiHVz4c/X4eulqMNHtQOkBAbCiplJKZ2Rmq1SqYGK0TkDavhSMdEIY4DjFpCMbQqDfYyQSAcqnEy596kf1ml2ECQbnM+x9dIwyHDKKQJE5xXG+0wT+uuWeS4HCcqfboffZvPje5ibmYXTs3ZeYHaJoqTp8+xcrKKpubmwDMzc2xublJpVIeRXYkSZKZTA6iYmZmZjh37twhxhYEwSGF52HHYWRmFdbULI3ANS4l1yPsD4jDCBwDSrG9ucnOzg5hEiMdh2qpjOuW8EJNuVJlGA64efsWXqlEEg5phyHD4ZCzZ89SKpW4cuUKURTdU+F4sD7k6/cwNF/sY/GvfWNvzc2SxXtyx/Miepemlo/+9E//NDs7O+zt7TE11aBWq1IqBUxNTRGGdr42NzfpdDqHAkuee+456/yd/Y7v+0fbdNc+Tr6v6EeSBwNYwSsljiIc4ZAK6w7geo7lpbnAZwzCig440hZZdiQ4jiEc9Gjt7dHpDcA4eF6Asi4nOJ47EnyOmj+KQ2yyfDtm5Gc6NTWN63pAOPrOJAVk9ITilOVvTGZ6Gwn/9vUwjFhfX2fQ7zNTb9CoNpCuVTzSJKVcshUABr0+lVKJuelpLpw5S71aI41TOu022xvrDAY9WwVAayqBz+LCPLJUxmidOR8nWQLIlHqphOdItvabdPsDEm2AXOARh/pUXGNJklAtV7ly+Qo3bt5ga3ubldVVhmE0Su+RAxR5EIHAzpEtHbIGQKlUQjoO/UH/iLL8cfnC4deT4azinExix/fHXw/ooYSfnMkWN2yuaRUPQCklw+GQq1evcvPmTXZ3d5mZmaFSqfDSSy8xPT3Nk089yTe+8Q2uXLlySEvZ39/nH/yDf8BgMBgx/fHii48Mks8cypIkAa2tjKMUKolAp5hUIQQ40kHpBK1sboQ0jukNevQ6PcLBEGMcjGu9/aMoJk4SojjCrlGncIBqzF3SUU4SeB4G7Rk/sAUHfgbFkOiin1bupJd/d21tje3tbdbW1nBdl1KpxE/91E/xwgsv4Ac+r732Gl/72tcOzZ1Sin/1O//qkMN0/rsfR/jJ+5WbesrlMqdOnWJmZppBv83W5i1c6VCtVKj4HsQRm5ub9NpNZqanOXXiJN12G2EMtXI1y8ukWVlawjgul69dZdDpEKUaZQTSmRRWevdQywfpx+T3k4WkfO7Go39yxSN3kM3nTghBp9Ol1/uQmzdv0m63mZmZYWFhgWeffRbXdanVavzpn/4p77///mjfAnz00Uesra2N/PYepfmv6KANEkcIKm6JSqnE2toadWlYnJ/GpCnNvT1Kvsfc3CzSczFCkCjYafZodfsszM4yXatTrtVBG/Z29wgCm2241bLV3otZrD8uTD+ZSUNREJqk8RoOR0gWzZjFHCoHUZUW3bt+/Tq3bt3izp071Go1XNfllVde4bnnnsNxHP7gD/6AN99889DcheGQf/yP/zFRFB76zWIOtQftd/FabhIv/gObCV8rhVEuaHCEiycdHNdFSIE0GteRONKM+E+/30dEEKcaTxlEoghVShwrBK7NqZPx47sn12NUaPTmjTXarQ5LS4ucOX2GqUaDVrODMZP7X0TmLOpzvOCHsEqylBKZoVfRMGQ4GJDECa6BVKVIIUnkAJSmZARLs3OcWF2hVq4QeD7JMERoQ7/TxZgU13EzUKCMlIJw0GduqkGaWnPisFImjBP6gyGp1iQZatYdDq0ubheZzTlX9BHP5r9eq9PpdLl58yZRGDEYDNnZ2WHYH1g3gGwNlkolK/SkKYxynmk2NzdZXl6mVq0yjELarZYNpDDm0G99HDoeAZ+EOE/mneOC7b2gn4c2e+WCSK5VFcM184XqOM6oKnOeOGk4HGKMzcnw9ttv8/bbb9Nut0cNzu3f2mgGgz6O4+L7/rEVrCcd8kU63nxy4DyVS/TCQGo01WqFJFboSDEzNU2lUhslw0NLpHCQwsEY6Pf6tJpNG1IpPWIBYRITxhGJii28zwFEePB7ZsToJtE4PJ6/LvbrXjSp3+OZYvPrufCaC5e5zfr69es4jkO/3x/NwY0bN7h69Srf+973ePvtt48wViEYOV+WSqVD8OijMj/Eccz8/CLT09OcOnWKbqtCPGjjCslUrc7yzDSugKrrsoliutGgUi6xvLLMqeVVUq2Zmp7lzOmzJHg0O32E0TZaAzDCsbW+CnNWaMEDtri41g7G6KiJ8/hnF5G7AyQJQOL7AUZL0sSAkCOB5fbt21SrlVEtpSiK2N/f5/bt27zzzju88847o/2YO8Tn4crD4RDP80b/xs04h3p3D8ZXXO/CZHZ7k0ViZhtPa021UsF1XZI4QRidOVsGoG2F9qBcRiOItSFKEwLfZWFuDi0dkiSi025RqVXRacKg3yeNE3voaY04krF73PSa7cUjSokAMuR34owwNmX2AD34KXPw9Gw95akJ8vHOUbX8c9d16XQ63LhxgzRNR6ZLz/O4du0aSilee+017ty5c8h/Lz/4hsMhUkoqlfIhZPBR5trKD0bLrwXlUtmatxyB5zo4UuJJQdmRlIOAwHXwrFYJ2FpRhJFNZJlmJk/XI0ozJ22hEdr+M4XEuof3Y2GujAAN/faAbrPHiaWTlP0K5aA8Ye6ymTpyeTLqKh2B9AQCaROjYnDwkNIl1fDR1ev0ewOWV5apVivUKhVcpViZm+fsmbM0pup02h12WusknT43r19j0O/gOZKpxiy1Ws1aDzLBMlCKcpqiEiv8JOUSgzixvj9RxMxU3a4hRzKMImudyBprtAQkOuMDvu/jei5rt24Qh4PsHkUcJQg0rusgRIAUApUhyUkY2mgvk0UdSmlDfAwWjHAcGo0GYRQSRmF2pjgfWwA6PO5357H38/m9jpqHQH7yv+MOZ/YAzQUdsMJPp9PJ4NoSCwsLzM/Ps7a2xv7+Pt/+9rdHG/jMmTPs7e2N7PWVSoUnn3yS9957bwRdj2/golDw8QfeDlYYhiwszNFTMcoolpaWqJTKoLLaT0aDMbhS4pRL1Op1ypUa0vWI4oSkpwijiDhNSLUCR+K5LtJxAW1D1IXJmKzDUSm2+PqosPOxhAdx1P8if16O/uRZPnPmvLu7y8mTJ6nVaqysrNBut2m327z33nv84R/+YWZbb9CYanDr5k2kdCiVSjzxxBO0Wi02NzfwPAu73037fJD5yw+N06dP4fs+rWYLzxFMNRqYNMFzXarVKr4ANdUgkGdYnJ/H9wMadahVKjTbbUq+T+B5pKHNzO257iibaikI8DwfKcc1CHPgB3CfxWQONuIBuqN18f3Bfcc8YcTmc+E117gBhHDwfWlNl+YgKaU1VZ6nVCpRq9Wo1+tsbGywu7vLN77xjVEgwRNPPMH169eJ45ggCJiZmeHUqVO8/fbbpGlKqVR6YOTguHE4FMCTCV1a2Zw9zWaTeG6a2BWUPA/ftwESpUqZoBIgPZdhFFMKXHzPwXMcGo0am7tNBv0+3W4Hx3VGfVQqyQ5pb+Tsf9w6u3vf7tFvUXzG0aSROYyfKx9FJaCI/sRxNFL+oiii2+0yMzPD9PQ0J06cYGNjg2azycbGBq+++mrmvL5MmqZsbW2Nwqtzs1ezuU+5XHnkTvvAKIqu0WiwML/A/NwC7XaHKIwyNx3NdLXOXL2G7zo4AjAKlSTWP0gIAikRSuMiKHk+JV8RpYYkzXwRjcbhqKP/oUEnG15jBetBd8jmnR0unH2SemWKqcY0QhaEmtGfojB/gNodEX6y/4RjzWomTrFRip5VgDX0ugPWotu0Wx3OnTvD/PQsZ06c4pkLFwg8n3anTXe/Sb/bwzOCve0tyiWP5aVlZqbrBIFNEZMjeFobBsMBOtUkXkIYxyAFYaVEZVAiiiPiWgXQ+J5Dr9ez/kXYkHQjAoTj4HkeS0tL1KrVLHpVW2FOaBxp8D2JVg5GGhwkSoEnPBI0yhXEQqNijUIz7HcxAsIwQuboX8bXJo3bo6FJ5q/x4J97+QcdTw+8K4yZHPEFBxB88fM0Tdnd3cVxHM6fP88Xv/jFQ6aVnCF86lMvUqvVACuAzMzM8Df/5t+gWq2OYOHjTV7imH/H0eT7ZQbTNlttwjhFuD6eHyABrRQqTUijmNb+Pnt7O+zt7dJqtej3BrY8gjEkOqUz6DGIQ6Tv4vku0nNHdbWMMRhtRgvmbv/yft7t2oNMXHHuis+BAyZcNKloren3+zSbTaanp/nKV77C3Nzc6P78IF5eXubC+fPkcL1Sil/+5V/m2WefRSk9mrtHI6Ta356bm2Nubm4U1tvv90fmHwwEvk+1UuHiuQu88PQzLM8v4BiBUIZGtUbUG9Jqtuj3+wyGA9IkybQgW6ixXC6PkK7DY09hDu/v3xHhqXDtfuYykxlGfc/n5uA7Vvs+8Cc5MD9ubW1RLpdH5pLc9yr/53kuL774Iq5n+xqGQ86dO8ev/dqv4brOKArk4/r7ZM2cKEYorRkMBsRJwvLyMvV6baRRVioVKwBMTVMplfEcF6EVRiU4UlD2fbqtJs29fVSa0ul0uHr1Kru7u9YPREpsWGxu0tAYo4+YbnKziP17+N/x8zJ5b07uupko/OTk5U77hWe3WnZ9Li8v8wu/8AvU6/VDfNMYw9mzZ1lcWgQYRbn9xm/8Bqurq1nJFjWq0fQoyRhruqxWq7zw4gu4roPve6RJjBQOi3NzLMxMUw58BAatUyRWyfIcBweDYwxGp3ieS6PeYH5ulnIpyNKHZIqalAjhcBw/H+2l7ONer8/u7i7DwYBKucyZM2cI/ODgCwcg7F33afFazrekLOS6yR6W781EaYZhRLlc5dSp05w/d56yHzDodum1O3TbHdI4QRhDtVRmaXGRlaVlpqYaI3Q1CAJmZ2dZXV2hWq1QKQeUSz6lwMf3XUqBR7VSolTyqVbLVCtl6tUyjXqVcsnH91x8zyPwPSrlElONBo1GHcdxQR/0J1eOPNcl8FzKvkvZFfgoAqGo+oZ6STDd8KhXXQQqs9oMRghmGEVHElQWx+1B/t2dNMW9y/06O98HPVRV91w7sXZQgzbKmgg4gNzzEDqtNZ1Ol1OnHFqtFm+//fYo+sQWoKuwvr7O7dt3RtCvMYb19XX+u//u79Nut8kh1lwyPmA0eRLDewk74yTGBIGD6r9CSsLIQq+usYxZqQQlLUpjNREbVjkY9Gl1urTbbXsfWcLDTptBGuOXS0RJFq6ZaxyHJnvSJB5Fe+41HxN7ONkj7Njv5xu8WGQ29+Hq9/s0Gg1ef/01dnd3efHFF6nX6zzzzDM0m02iKGJnZ3fE2OM45p/9s382OjCLPg2PgoIgoFqtHnp2miRWSNWand0dnjx32q5RY2vqoG1iSEdITiyvsHFng163i1uuECU2CsxzLQPyqxVSA1qnB7ORmWge5vw3E+b+iIZ51wfbDV9UAOw+VBijsFEeAteTaOMQx+kIwWu1Wpw4cWJkQgkCG+lx5swZwjBke3ubmzdvjnyKAN566y12dnYYDGyUZW6mOc6x8eOieUYb2q0W+/v7VKoVdBwy6PdHpjqjNDrNSj1oAwqE0kgMU3Xr79PrdBHGEEcRUloU0yKO+fo+MA8dL4RP0jRzgRdy/4N79XuSIGQKeXDyz8YzdXuuhy4oCznPS9KE119/fYQEJUnCs88+a/3Zej2Gg+Fo7rrdLn//7//9UYj/ON+c1OZ7uQ2M35tfy6u1X79+nTjzJWm3m9QrHs8++VO4aczuzhb9fo9ht0scRzSm6sxOT5OEhl67CTqlWq3hlctUUsV+t0svK1WT+9wdOJnfrX25027Czs4mSRzie5Ll5QUqlQpRHBX6fxyaMOkH7P+0ThEyN03ZYBeTST5a2KirpdUVnn/hORbn59nb2+XGzg7tZhPHcZFCUitXKPslzp85R22qijIJQh5GVIfDIcPhENf1cDKBKzUaX7t4vkMQuAS+Sznw0apM6EocRxD4Nk1CHKekwscNylQqJVSaZgiVdTh3PQdHOhhHgjEIjQ3eSSVaQqoN0pVWQHXs3yRWxLFi0O+js+g7g0E6EpKDeSj24+M6QR+d37vzz8Jk3Tc9sPCTpglpehDphSGLTpL5+XAo3D03U21vb3PmzBlWV1epVCp87nOf49lnn8VxHL7xjW/YcL4sQVluNmu1WiNT13GalRViHhR2y5hf9pUsm4g1SRltIXJjU0kZY0jiiEQJhGvt0jZnSkCr1SRKEjzPwQs8+oM+veGATr+HAdxSQKxjdKpGY5WTEBpjJhWffDRS7aTxUFk+EOBQaZFiQkpjModipUlVChgGgwH9fp9nnnkGEPzCL/wCJ06c4Jd+6Zf45je/ycbGBhsbG9y+fZvBwGZd7vV6Rxj8o/A5kFKO8gylaWLzQxlja+Bk/b5zZ534Uy9ScRyU0pAqdJaLJM/+myQJrVabUr1BrF20VqPEml5Qsn4lcZbsC6ymKEwWefKgppPDDuwPJvhkoo/hkBCZC0EHieUO/OWKTrVKKTY3N3nyySeZnp6mXC7z7LPPcv78efb39/nud7+LUort7W22t7dHKI/N3GvNtPk8flKkjaY/GLC2tkav1yNwBdoYhsMh3W7X5rZxHIyAJDlIc+A6knqtRq1Sweza5KG5n5nrekgpiJIYI7K0BYiJe+5elAs+R68dufOIoJsfkEqrI/lRcuE99/WArHip1lbHzdCfcrnM4uIiSil+9md/FiEEv/Vbv8VXv/pVwjDk8uXLbG9vE4YhYINF8jDrovDzKCg3ibuuy/z8PNVqlfU7d4jjxBadjSN0qpifmWa2VqbkO2xurpOEA7rdEEdOsbK8zKBc5uZHH1EKfGYWFvArFZqdLk4mxHmeC9LhXjldRsg1tq+DYY9bN2+g05hq4HHqxCoXLpzn+o3rNJutTME++v3j3oONcrLJX/WBIHxImHQ4ceIEn//iTzE3P0e/32NnbY1bV66g05SLT1ykUa2zMD/P9MwUQTCH0inDsIdB4boHqUdGPlxSgHZQnl33sVYEnkcp8KhVK2hj0V4/8Yh8j7RcIkkShsOIUDs4bgkpoNfpIF0faQwl36FaalCtlDNh2SB1QthTuLHAcSAxWT2wwMP3XEpewKAzZDtsY7RCOw7CPeA/h31nH2pJHTvux31++NbjEdd7PfMhkB9GDDEIbMh6FIVZCuxMdjDgCIlwMkwmY8hnzpwhCAIaUw2q1QrdbpdKpYLv+6OSCXnUUc7kZ2Zn2NrcGv3+JInysMRZ/OTuh5TBUJQ1rP9xFhliNI6w1Sm0UURRgkkdjGc3/zAcEkVDjE5xfQcjNb1hn629XZrtFlobW0nc2IPpOORnvL0HHx+vcR19zlE6Yt7KXiutbME8KZmZmiLMcnUcQP521FzHGbWtXC5TrVY5efIke3t7rK6uZM50HvV6nf39febm5gq+KPbQnZ+fZzDoj5jEZNv93bWESUzbdR0q1Uq2Fg8yXWggNYbuwGZGbfiBzbWkVZaaQDEc9tnZ3WFnb4dBlBANQhLHR2XIkBAOqTIorbFW4fzQt86whRm46/gfpjFtM3Mjuu8NO7Z2hLDVtPOwaKUMGJs7BwxSSDzHBZOFCgvBxYsX2dnZYWlpiVLZJjucnp7G932CIKBULh1E7xiolMukaTJCXovzNwkNmNRfM8HOZRWN7HUBVtNCsLW/z53tHVaX5kgxhElMr98njEKE62AwmeBjrFbqebiupFwOqNfKSGNws7p6YTjMhHfIfbNyP4/jlaVx/67DfTKH5uw4pnsMipB9VyBwXY9Go85wOECrFMSBKUxgi7zmPkJ+ELC4uMjs7CzNZpOlpUW2t7cpl8s0Go0MRZ8GyFJy2MR083NzrN1em+ir9XE08mJEZ7fbZXp6mlQp+rnfSWbCjMIh1YVpzp5cpRa4VD2HRq3KyvIqJ1ZWkYuL7O5sc2t9k1qtQqlSpz8M8RyXUhDgeCUSpbKAkXvPlZVP7Rx1Oh2icMB0fZ6VhQV++qe+wML8PB988AG3b9+2BUc5QLvHFevx8ZmaarC4OMvGxjZCQKNexxgHrVKEdKhUqjz99LNUylWuX79Be2eH3du3cdOE2Zlp6o0atVqNxkyD+mydVMWkcYLjOgghESIvR5PiOB5CWoXAqJQ4NsgYK4gEHkHgUymXSDM01ks9PNcqsqlSBKUSYQKJgjhO6Pc6aC1wtMbUyizPTzNbq4wELh2H9JMQEUeU3CoAritp1HzieMjQE8zNTtPq9DHaEJQCtBQkiUIpjXQcbHqhLHVKzi51fp4ezFcGJ8ChYINxpeJegu5kt43J9+vjtzMPIfw4jkcUxShlU5hjQoSwkqowjLK1GmNGyZJyX5I7d+6MclK8/fY7fP3rXyeKIj766CMajYZ1eIytc3OSJFQqlQydOKgif9RsJMbe53TvCJTDXxFIIcnTaQkBntCUAx/f99DDmCiJEELiej46c4RzfBekFSoGofUfSZIUozRCW5OLhuxgOvz7QqiCsJNrhPfX7geRlLMLSMchihPAommDQYhKUxzXFtnDqIxJi9H8CayZaTgc8vrrr3Pt2jUuXXqDTqfD+++/z/r6OnEcU6vV6PW6o6gxz3Op160P1zgDvlsf7qWh5s/1PAdEpokJK8gaAzGw026xvrnJfK1Oqu08YAyOFPiZb8XFJ59ic2eXYRyROhykj9cGkxr717Zo4gF3t1013gf79SNSQIZE3FsAKjLpKKsdpLXBcQUIjcCa99BmpCkrozECPN8n1ZrLV66wfucO3W6Xp59+mt/5nd+h1+tx+/YaCwuLbG5sIAQjlG5qeoooDg/9/qQ2jguuB/eNM7hcADnQ1EfCj3RIHcGd1j5/8sMf8Fe+8vOEGNxSgBfY9sdJTJKmFsmx3wY0Uggq1TIrJ5boJwmpFjhBmfWNLXLh1aLDYtQW+37S/N0PunUw9wfM9x7ChAApXaIwAWS294Zg0mxYnFHkkcE6+prMBO+4LvvNJq+//jrb29u8++57fOtb32J3d5ebN2/getZPLU5C/MDm6ypVSjSm6pjbhxG7e5np4P5NlUopNjY2rBDU6YycmJVW9HtdkuHAIg1emanyCZam6sRpQlCuEvg+rhBcfOIJ9tpdG8ouDEZZxcz1vAOfH5MhCgVfHft6bI9g3X0dz7FJFFVKHIb02k1KrkSmCfVSQNXzSJMsS/JdqMijgiBgdWWZMIwZDIZW+dcKgcBzXc6eOosrPT54/wobt69z+9ZNdLfD80+c58L5M1QbJbySQyIiBqktZyGMQWiNIySOtEq2dATSsT5qwgi0lOhE23650loYMnOUn5lIbRALVnkzUCobKkoTxQmDocToKv3BkCRKiCNNvVZiZqqCIySulPTaKQOlmW5MEQQBnuviOhJJRBS5yH7EdKPGdL1KqBL8epUIwyCMAIERgpIf4LoCozRJohj0BujYhvBrpdHZfUbkwo9B3GvPjM3BuNLxKOiBhZ9arUYcJ0hpHUtRyvpVeDZxmRC2kKcoZCttTE+xsrJCrVZDa83169fpdGyG2SSx2mWexbRSqbK6umrD/zyPVqs1+u2cCT8qe2KumI7YssZKscZOjhRWeCmVSiidEIUDUpMgcXE8j3K1wjCNkY6NzugNhiR50iiliKMQOZrwST9/gCrkB+Ek5vOo+lsulXA9nyRRI58sR2mEETi+i5FyBPE7md+EMpqLFy+yt7fH7Ows77//PltbW+zt7fHmm28C1lnzwoULXL16leXlZVZWVhgOh0xNTSGdKyid3K1Zx/Z70jjU63WmZ6YzZ2S7kYyxfmdKpxhHEsYRH129ysWTp6xQrhRGKXSSZoeMS6lco9O5Sbs/YOnMOcAQxRGpStFZJlcrCJIdlh9j4MdRgoko4N3Mgta5tF6vZ2YfZZmH0gg0jiMQUqAzTigdBw8PpTWrKys4mYlif2+PnZ0dms0m7777LlJK2u02Tz/9DLdv36ZUKrG6emIUwdftdpks/BVadp9zd/R7B3vPYFBCMFSKH7/zLi+//CJTvs/09AzVICBVijgzhydZ7aFcydI6wXGgUa8SGM2NtTsEQiB9B52oLLLaFObQ3LVPd+/LUcFnEgo26dm1Wh1jIE0yM1eS4gorvOEJcCyyKAQjx3Xpuly8aLN0T09Pc/369UzouWlztsQRS0sLTE9Ps76+zurqKnNzc6SJIghKCCGPQU0OC68PSvl3kyRhZ2cnC4c+MG33+j1azaZdm+gs8quMEWUwFtUAQb1Wo1IqIaSDKyRpVkwTBCoXevJxP6TzChgTXkX23MAv02jUGXQ71Es+VU8yHbi8+PRFPv/pl3n9xz/mm9/7Pu3+8L54qgGkFExPT3P6tAEkm5ubqCRFCluUdTgIufzBFdrNXXrdPeJoyEylxBMXn2D15CqO52KEJtUpSlsfLrQVfrzMH8j1POtuYGzGa20UcWpTpqgswa7ve/af56FKFv30VUqslBUnjEAbSDLTdaVUouR7+J5DPBSoeIhjEqZrJQLXJfA8PBWxv5FS9QPm56atn5zRJPEQaQxxYmhUFCeXZ2j3+wx0wiCN6fW7mcBlKJVKlAOfSlCmVvKYq81RC6pUqxU21tdptvsMU02q9QOHWD2Sc/4YemDhp1Ku4fspGGv+WQhcXphqsNHu8G6ng8qFHyFH3vGBHxCFEdevX7c+IK7L0tISf+tv/S1u3rzJ1772Nd55551RbZE0TTl79gxv/uQnXLt6FbgfOCyHsw+uT9bu7s7ccq1QSmte8T0fx3VxywEYxaA/ZL/VQUhJFPVHVaT39vfpdvuoRKGVAW3ToAvXyxi9KWzazHfEACJL7z/CnA6ftI9u8gW+X6JcqY58AHwBLzVqlJFc2tmmJVw0WGHIccirLodhSLfT5cMPP0QpRaVS4cUXX+TcuXP83u/9Hrdu3eK1115jGA5pNpu88sorbG5u8vrrr1kb+wM4ox9nDsuj0aambUXykQlmJPxYtEZKFyFTbq6vs76zw+rMFK5RqChia2OL/b0m/TAkUZYBz87M4iBQWS0hlaZonMymn+kn40LyqH33P/r3s37vdp+Uklq1YRknNtn4qbLHU406H+7scXUYk4o8evKgVILIEsq9//77DPp9ZmdnOXfuHH/n7/wdLl26xHe/+11ee+01+v0ejuNy9uw5VlZWeP3Hr7O+fueBD8dR+8W9MMzs/uxmC4ZLdlsdrl2/wWeffRY/cNBG0261iNODPDhhEqPSBK1TBsMuqYpxAx8hHJIooh/tYtyAwwjdwWH6cd1f7mVGOoq6QrlcwZF5HTaoO4JPzdZJwphLe036QloeIAVOxjel4xCGIZubm7RbLZTW1Go1fvVXf5Vbt27xta99lbW1Ne7cucNwOKTX6/GZz3yGD96/zGuvv2bR3gmdPW69HY/iTSal1CgHkS4qb0azt299xiBT7Rw54s9CgzJQKZWZbkzRGYbEcUQUhqRKjdACrSegakcQoOyZxiCNoFIqsTw/R73kMlsPqJeXWF2cYZgobm1sIYzGK5j0i2NwnNEzR3iWFhcpl6sEnsd0P2bBDbjS7bG7u0uqDWlq0ZDFlVVefvoiZ598CuG5dAchQkK1PoVBWAdklI3O8l2kBCMNqUlRqUbpFK3SUYSsRcbIkGuHwLfHdqXkI6Q11xsBxkiMEcRJymA4ZBhGVHyPwJGEvqDfVexvbWJOn6JcKeNJl6ofUPJcTJLiIqj4nhVOVYojPXzHI3AjaiWXVHtEgxidJhiVopVFm5IwhDTFhClzS0t86Yuf56UXXqBcqrC3s8PO3j7vXfmIt977kM3dfdJ8nA/NQT6p97+/JlkQHoRfPbDwE0UxQWDztkgpeXm2ym8uBHxQrXO13aSbJzgU1rbteS5SCG7euEGqUlKtOX/hAguLi5kfyQn+4A/+gFarNdKkBoMBg8GAra0N4iQ6VnsZ7/hheHt0tfD6PtCFzPzle5JqNWB6ZppUGwLHw/N9dG9Ip9Nlv9Ok027RbDXZ2tllfWMDpUClmjTRpIlCCYUwGZqSIwhZM4pILjBy2P3YnDnv9ZEFYYiihFJZ4rm29MN84PKbKxXqAlot+FEMSJuTw82So9WqNT668iFxErO9u4PneayeOMG5c+c4c+YMP/nJT0ZInjFmVFBx7fYtBsM+WttNlLfp4zheelnul2JtMshnWGKEA9JFOB79OOX96zeoly5S912ElNSnppGuR2U4JE5TpOvS7Q0YJjFpGuEK6+ithbLcBnkY+Rkd6PrwRI4G+v7npfj3Xs7ExoDOIGXP8xESHKP5+cU6X274vEqD/8+NbWLHs1GXjkQ4DqVSQL/fZ39/fxQ4cPHJJ5mbn+cLX/gCvu/xwx/+kG63myGB1o/DdR3293dRKiVX1T7u3E0iPRpPgzECZaA3iHj7nfd5/sJFXNdh2OsThkM836datz4JgygkjIb0+13arSZJGlOula0eYTRhGCP8jKEeg8zcdyTaPQTT+2HUBojCiFqtniGWmvM1l99aKaPSMpv7TT404mCRuTbSqVapcvny5VHutNnZWRaXljhz5gxPXHyCV1/9HvvNvZFZudvt0uv1WN+4Q5JEGDST6j3dra/3GpdJvnta65EZySLYmp2dHZRKR3VJhZTWfzKbI4nBdR2q1Qp77Q6Jjmw/49gK+NL6PRV+2T49OyQLZ6V9vgGEwBGWv/mutNn5TUoUhezvt/ngnZ/Q2t3GFSCNOaIsH2HKHH6+lILpRoOnzp/jL/fanAD+9Zrmj/Y6JMJBCI3n+UzNztGYX2S30wFt0VkpJbX6FEsKSkEZicYRykZz6YQkjtBKY7TlKdYHSI/WjyMzpVxoAs+GqTvCAOmo/JL12ROUHIkvfDydEBrwaj4DWaLmW+G732qzPDWDLyVUysxUq7aExmCALJUwWuEADgKhTYa0KurVCp3Mv9ciz1Zl11GK73p8+vln+a2/9td4/uJZXCkol0uYJ07Rbrd45sIJzp1a4l//wbfY2G1ZkGRkDj+MqN5r/eV/Py4w8MDCT5LYpGdgo4TawyHN1GE7HFrNM7NTS8D1XKq1GufOnKXf79PtddHKJuR67733+NEPf0iz1aTb7Rz6jTRNqVSruK5nOziuSI0g50kb9ZgVPOm2AkkhcYSLzDJVS89lamaGxdWTKARaSHBd/EqZmflZtDQMBn2GUcz27i6J0lRrDYbtLqmyoca4ng1lLDhaHuYth/smxlWPhzxrjmPIaVa0TjgSpRVhmnInGdJwJfsohPSyulgCN8sHc/HJJ0nTlGarSbvbJU5iPvjgA65cucz3X/0+e3t7h3x6jLG1wmamp1lbuzVROp/0/n6oXC5Tr9XGkrYVhbys/IOxm3xje5v+udN4xuAaTaVSthWX27YvUgo83yHGRra5nq2CnigrtCJBcKAl5vIOuRCba4yjJogj8hATDs/874MkDtTGkCQK37d7Ik1TNsMBm3XBemL3nnRcHFfguA6e5zI7O0u9WiOO46z6t+LGzRtcuvRj/uW/+Jfs7+/bEGCK2b5hZmZm1M77iT68qwnlMG87uHboHjH6lxrBtbVNtvZbLF84x1S1nJV9sH5ZnV6XOI3p9Xvs7e/RarcIPI9GtUZ7MCAIArphikqsM+oBtiQO2nK3fXbM9ftDno/fsEmS2qUgQKWKbmJYT0PSFDpagfRxXIkRBs+zOVuefvopeplAk6Yp3W6X9957j5+8+SYfXf2I7e2tQ79tjKFarVKpVLK1dWxz7tqXewqG5vBLYQxGHshuGLi1tsbttducXl7EYP1L7KGe5UxTil6vQ6fVpNfpkCDp9jKfSWVwfetG4UhBEPgIrUBludSUHvPZse2VwjrBlzNkOIoiBtGQbqfLoNfhhWeeYnlhHuG9yndfe5PEHO7IccM1wg61QUioNxqEakA3CmnHQ5JUge9YAb1aplSu4Ac2K3O33SIeDsDYaK0zp04z7A+QwlApuegkJVExJksXY7TMcogp0kRlJS4iksRGqjpSUqtVAYkwCiFS0sQW0dbKFoNVSuPgIlIXxyT4wqPi1QjDmOFwyO7mOvP1Kotz85Rch7npOiaNiIddBl27D4V0kEaj4og0DPGlQ6nWYLvdschdYpFzR0ima1V+/os/xV/5ys/zxJmTzNYruALriJ0maA8Wah4XTy3x5JmT7DY72CDaw+vsborG3dCe459x/JzCAwo/QgieefYZSuUSS4sL1rN8b5OtcyeJOn0+c37AuQsXCMOQeq1OHMdcuXyZz//UF5hZmOP1H7/O7fU7JCqh023zzntvZ3ZOnR0atqlJmtDv9+n3+0jhoEwezjvelYL0J3KtIxcwjnOpyjSI/EsZSengegGO5yIdD+EIEF6WyMkmWjJCID2JG3jUGnVmo1na3Q7VSpXYgF8KCIZh5jxsOYHRJkMRBEIYpqcbNMoVWvv7hPFw1Gfr1jYa6UOazXET/yAChAFOnDjB6dPnqNXKLC4t0u912KlI1FSD+epNPnPhKUrlMr1Ol9MnT/Lqq6/ywkuf4szZM7z9zjt8cPkDmk3b7k6rheMKpAQhralMKWVt1XHE1tZ2xnwPnzSTFvi4eWti+42hUqlQKgUF343DJITVMI3joAV0w5DucEjN9wANOkUIB79UopymzM5KSmFI0txHqZRy4FFyBWE/QksH4VhYmcwMgQDHdfA9h3AwQGqdCT6WYWiBTcX/AM5890uVcoUXXnge6QhWT6zgOJKos83W+dOEc9v8zEtlTp46RbvV4sTqCnfu3KHf7XLxiSdYXFzk0qUfs75+hygOabWb7O7tUCoFVgsfRelJ4iRlv9kijhOLGhTPh2MYUjEKbCREHZECi18cZ3vC1r7LDsj9bo+3r3zIy88/S8WpglaE0ZBhFNHudml12uw1m+w3WyhtmJ9boDE1Taffx3ddXOkQJtomyJNZG6XMoaCRgTkXZkW2V3XuQ1Y0rcChdXwcg84Vsok+e8ATTzzB3Nw8jakac/NzNHc32FqdwXF9TtVu8/NPPWuj91TCzMwMP/zBD/jMZz/DwuICb7zxBjdv3KTdaTMIh2xsblCpVmxfCj6QWmt7uO3uFuroHd1jk+Zu4jRN6I81hRffWXMWUtrIJTvY9IZD9vZbLE3PYKQgMVleKpsgnyiO2drYpNVsMhgMMG5Ap9dnEMUo6SIzc0/g+fzMFz7HMxdPEzgwDGPevXyVN955n1a7y0EZzkxwn57mxMoSvusyzOpCzs3MMDXVYHtnl363TxrFuBgcbA2/PBhFZHM9zl8r5SonT55Ga5ibn7dD2jnJUGnq1Wv8xvIJGtMz7O/vcub0KW6v3aZUq1HyHLrDIa2dXUqepFytY4RDnBokGiFiVBpjHfdBOGIkGA4GfXr9LoNBf5SJ3eauCrKCsQJhBL7rQamUzb8hjmKiKCZNFC6awJEWUUtTPM9BOpo4jLh27RoCaNSqeL6H57uEYUiv38UPAgKvZPNmhRE6TWk0Grh+gEg1IlFIg3UHcRzOnz7NKy++wOkTq1QrJdtOKRA6sSYynaLSFKE1U/Uavu8xDGMOQsMOdMRJe+pRoDyT6IGEHykl/8//1/+DK1eu0Ot3+bmf/3nefOsnPPepF9ne2ebG9et86Utf4vr1GwRBwMrKMv/23/5bwkGf2aVFnnruGeYW53jzzTe4euMjdve2cV0X6UrOnjiLMYbr16+TKFsQ9OSJU6RpytWrH40G4/BmLKiUxmQQa163ysJqY+yaA+jUskALx7q4nodbKiMdFyMkxmja3T6bOztcOLGAdjQ20bc94C2/dnBcj6npaWQpwHg+3TDK7JkSjIM1G2Q2fAEnV1b49371V9i4dYOPrn7E+tYGe/t7dPshqXFQIg8JzNr4CC0N/9F/9B/ypS/9PH/wh9/g13/912l3O+BI5pcW8b/5TX7mL/8Mruvw7jvv8oXPfZ7nX/oU67dvE6cpSyeWmZ2f4dVXv8vu7vYoy7XOaqE988wzXLp0Ca01URziuA6f++zneO2110e/f680BcX7jjBdIajVaviBh5R23h3HMlytFcrY2TYCtCMxaMI0YWNnm4Wpmq1dg42qCMrlLDGZZdK7O7uoKKLsOVR9l1ani049HM9BS8CRVisHKkHAL3/553BJ6bWbtPf2uXXrNjv7bSIjSDPfjUMAwl029P063p47f46/9//+e/zhH/0hS8uLvPzKK7z97tt86jOf5vTly2ilef7553j7J29x4fwFPNflW9/8E/b39phfmOellz9FtVZmY32d27dv0eu1SdMSjuvwzJNPsbGxwfb2LnGSkCrFs888y+3bd9jb2x21+26C6dE2j91bQMzEIekny2psBEI4KCwaduntd/jcy5/i/PISUiuicEC312O32WJje4etnR26/T5+UGJhYR4jJTpJKHkeZdcnHIRoqW1upmwOhXPQFJvHK5+ngrRTlNXHzCLjDHrSHE6cTwH/2f/lP6Neb/D6pdf49d/4da58+CGnzp3G8Vzq3/0uX/75L9Prddna3OLFF17gwhMX6LSbVPernDp9iqXlJb7znT9lY2udveaezdclbKbzkydPcunSpVE256mpKc6dO8dP3vxJlpYEHMfFmKNZusfn9W7CkMz9yYSwvFY6SFyMdBGuZ4M7tBUqUidlr9MnSpRVClTmxxIlxGHCMIro9oYElToz0me31WEYhugsLYhSCmkEyTAkHvb5/Kdfol4RxGHEy596hnNnVvjaN/6YnVYPna0h13E5c/IkK3NzCGWTnpY9H6UV2zt7vPfeZd557wN2dvdsGhOjSTOF+djD1RiefPJJfvNv/havv36JM2fOMD07y257n/nFBdw33uTik8+yuLDE6z9+nZdffpmd7W3euPRj9vZ28esNTl8oU/FcGjOz9MOQdq+P0AmNqo/nSJvbyGjiKCYMI7rdDvv7e/T6fRuU4ljzoDE2L5TrJniehwMoHALXRbrWalEOAuI4IY1TksgnDEKSOCFOE8ppQmO6iisDSAW7rX00GuHYHHbGEZhM2TOOJExTwiTBSAfH8zFGokMFkcY1ls/5vsfS/BxnT55iZWmJmUYNR9j8QUmk0ZEiShOiRJFqO87Wp82i2QUD6kSl/t8Z4UcIQaPRoFKp8M//53+G5/s0pm1unkajYZ0WjQ17T9IE1/Ns7aXM+W1+fp7dnS3iOOIP//APGGQlCbTWeJ432ogqS6DU7rSPpNDO75k4GDmkXXxP8ZrFwYQQOFkyp6BUQjoe0gtA2ognYeyGGIQhb733Pp9+/ikCz0GpBKRAiwwNcFy8wGd6bpZSEhNpwV5ngMFK5oaiXdNOeNjvMdeocfrlF/jU0xfYa+6ysb3Njy69yfsfrTFUNkGCyZJGFvud/y1qmcctjElMrFarMT09zeXLV/gf/of/ga/88i/RmJ4a1VKzc2brDBkM9XrdFjtVKeVKhWq5hBDw5huXUKNcTC5CyENOyHEco5Vie3sHYw6qvT9I5Mn4tWq1yuzsLOVSGd8XVCtlZmZmmJub4/rNm6yvbx4qVJjp8PTCgc2QmuVSSZKEOEnY3tljr9lic3OTza1NXEdS9nw8LzNzGVu7BqNHOIEwBp3GnFia57MvPQdpRNjv8cHlj/jGH3+Lq7c3UaMFN7aRHxC1O/y5yZy9p5FS8k//6T+1RSQ9F0c61Ot1m5QQu/+USqnXaoCwGY+FYGVlhatXr9DptvnjP/4jwtAWnhVS4Af+KLdMHMcIIdjfb5Ik8T0xrOMQhNGhOvYAIbClDfJtIQHHxfFKmCwMXCPY2m/xzgdXaJR8AmOI44h2r0Or22Gv1aQ/HFCpViiXq5TKZbqDPkkcE/g2EZwkJNUGI7MoTqFxsizV0oBrrKBjs3FYCH/kAzJumh5N32QGfe/xEdQbdaampkc1uZ557lkbDBLYelw604Jzh/Zarcbmxh2klMzOzdLpdEAIvvWtb9PvdrOABBsZ5vv+CL1LkoQwDGk2m4X9Zg6VBprUxknoXaHjdt6EwBUax3MoVytUqlMMBylRAlp6YAzaWD+bYaLYbjZJDRilwBhcx6Fc9alXXRKlkeUKsVwn2mvSG24TRvGoDSpJcFxBKuD69evs7e3QqMwhRErgKl5+/kk67TZf+8NvMUxTwNYUPHfuHBU/QCYKxxFEvR794ZBet4cyBr9colKr4foeOowzR+2jvLI4v0EQ2HxGacJ3vvMdfu7LX8YIgVfymZ6dIU7i0fwZY2hMTZFqTRTHlKtVVmdnGbTbrG9us7+3hyclM/UqJU/ilQOSVDEcDuj1u7Q7bZqtZpYDyp4FgeeBGFjhM6sV6fs+Jc9HaNfmk8sKi3qeh+u4GE+j/YA4KJGmKbFKcUoejakGpVKNmzfW+eDKFeLtbRZmZylXqyhj09dIx0Eh6A5jQmWQfgkZlIlDTZo6yNTDN4okNQRY5Ofk6gka1SrlwEMYbQuDG0hUyjCO6EURgzghzEx0hbCRicrDvQSe4mcP64v4UFXd6/UGzz37PG+/9Q7KaJ5/6SU8LyDNIp18v8Te/h6X3niTf/H/+21Wl5dI04RhvzdK0HXq1Cmq5Qqe53Hr1u1RZeNqtUoQBEgp6PW61rlKCutYIYwVDCYMyohpGevkZ0b2L5EJPAqJtUB5UnBiZYWzp89w9cZNumGCFo4VVozN9aOFIjXwk3fe49LTF/jsS8+C1iRKEytNpBSx0Ug/oDrVQMYxw3aXtY1NhlGCER42YWIe/WYd7Gw2ZZidrpOUJLWSYHlxltnpaeLkW7x/dQ1lMpYr7i0FP6hEHAQBJ0+eYnZmhn/6//0f+bv/m/81Ujh4rs9wGFGt1NAG1m7f4V/97r9m7dZNfM/D911u3byOUoqFxUUa9Trzc3NsbW3T7w8ZDAZZKHZWogTY2to4kP3QGGNh8iLdDQ0qOqfWajWmpho89eQTnD+zwtLiAtVaDYyhXinRajbpDkKKPmIJmu1Bh04SUipVQGlr1mm3uHlnje2dXZshWtj8No4jka6LcDI0Qlh/rbwoh0EQRTEbG+uUPv8S0leUnAovv/QsfrXMv/jX3+Da+taRfoy/f/AD1P6VUjI1Pc0rL3+aP/qjP+b02bO8/JnPEAQlBv0hShmCUpm9vSZvvfUOv/O7v8uJlRWkFOzv7dBqtajV6qyurvL8c88Rxwnrm9torSmVbBFR17F+T3v7u9bHQVgQM/MovUsbjzKjAwHIZIlP7eHpS0O1FPDEkxeZnV/kjfeu0I01iRKgNSYWxEnEm+99wMmleeZKJcJhn/32Pr1BH+E4NGZsNWzf8wFNEoXE0RAprLN+YeHZNmX/+a7LxTOniAdddnZ2GUSZb5CwqQLuwm6P7L0HTUFRqVS4cOEiKtX8m69+lf/k//x/opYJnVEU43kBURTz4dWr/Mvf/m0kefZ1wY0bN3Bdl8XFBapnzjAzM8ParVs40ha0rdVqI8Q0juMs07o8NBfH2yGPF4CsfGpwpeD8mRM89+xTnLtwlpOnT3Hj5jpf/dofEbfDDK0xWQSQRivF1m6LWIGPtAeiVnYtaUGcpsRJSqIUnX6PQRhmlQJGo43BIKVPrxty+84dVpZq6DQmTWJKvsuJlUXqFZ+4PUBIycmVVeamZ3DzMijCZmeu1uuIcpnWMKQ/DNlpdfA9HyEGCH38OFAYMSEElUqFU6dO8f3vv8oTzz2NlIJatcpwOAQEUrqsb27ywx/+iO999zvMz1mfu6vtm3hGo5OYerXCytISpXIF13GJk4ROr8ve/h69fo9ev0+z08r83GRmvjTEwwhHgO+6aN8AEk86KAnKuEgtcYxEGpumRHgOwnHws1JTrufiV0oEpRLKCLrDAZGCNFXsNltMT09TqtasCwMSLXxSIUmEpFquYhyPnf0tBsMYgcQTDhJDw/U5s3KCWqmMKyQyQ6fCcMhgOKA/6NPtD9nc2eXO5h77rSZRHGcAhzMylU5Cw+/Hr+dudK/7Hkj4McYmV5uamuJLX/pZ3nr7Lb776qskcYrrumhtUErjez53bq/zta9/jXfefoeF+Tnm5ubxFxeI4yH1eo3f/Bt/k2q2mL797e+ws7PLlStX6HQ61Ov1LEW9Q7lcG5VZOPh3DBM2YLN85vC1FYAEBkdC2ZFMVWt89pVP89d/46+zuDDPf/ff/2O+/dqbNjRWiIPQUGO16J1mi9/9X75Bf9jluacvIgVEiaIfJoRaIEsVtDbs7e7zk/c+4PraHRQ2UsoemzJrrj2U4zglTmIqlTKJTNFqSNyPmJ1u8OyTT7C5vcd+NzrEu/WhhfHgAs/B/NnSFa+8/Aqzs7P83u//Pq1WGxCUSmVbI2jBIUlSvvq1r/Nvvvo1Tp1c5cmLF1ldWUarhH63zV/+6Z/mzJkzPHnxIlevXuO99z5gc3OTZrNJkiTU63U8z8XzPfzAt5FgmAwFmhx9ctfDE/B9nyeffJIv/tTnmZ8q4blZdXOlWZ6fY6pWo9MP7YGdwalawN6gx1Zrn7mlElJIpBAEpYDqVIWgH5CaFDyJCBNkmmJkhl46EiPzFSfQGqQ0KGBrZxulE0q+JEk1rjKsLMxy9vQJbm1uk6pDHTvSx4eZv3z+T6ye4OSJk/z27/w2a7fWUKmmFJQJQxst4vsB7737Hv/iX/wLNjbWOXP6NAsL81QqJaJogDGav/prv8bMzAzlcoXvvfoDdnZ3eeedd4ljxeLSMqWSzZJcm6oSbYWMCnyK3Fvm3m0VhX0kEJZxC8Py3DSffuFZPv3KS7zw4gvgevyj//m3+e5rP0FprMlZOiA9rq7d4fW33uGLLzyHShKQEq9UYm5xEaUtohh4toxFGsdIpal4Hh0nsUlIJRiRITrYdgSux+deep6LZ05x/eZNPrpxi/c+uEKnP8AYaZOxjTpydG0W3z+IxmkFzBJ/6Yt/iTRN+ZNvf4vhMGROOjiOSxTZRKHdXp/f/4M/5Jvf+jaf+8ynWVpcZGZmhjRDdH7j13+dqXqDp556ip+8+SZrt25x5coV9vf3R7mgHMcZFY+Oo7wWnL5nm8cFICnAMYZ6OeArX/5Z/uZv/FVOrC7ieQ6pMVw4fYa1Gxt88zuvEad5dnhrDkmNZHOvSbM9YLFewRhFHA+IEHjCZxgnDKIBYRLS6feyskbpWHusL9gwVnx07RpPP3UC0ogk0UgnYGF+mqcunuf1N98FBMvz85QcD5IU7Ulc16JRzf191nd26PV6hFFEEsf4vi3Anc/28QqlyaKpDHNz89RqNW7+8S3CrMhnKSgRxyFOpjR8/wc/5J//839O4HmcPHGCqalpunt73L5zm1OrK7z08iucPnkCD8P6zQ/Z3t5gt7lPs922z3ED2v2IvLqrlJJS4FH2BL7rWIVaabxMyEgxxIQY36ZQEI7GdcGTrvVjNQalbQCLMAaSBKU0gVA0yi5JoohUSnc4oFap4DgCpWFvr8Paxjb94ZBmP6Tz0XW2N7YgcyMTAoTRzDYazE1P4wibWDJJrOk1imOGUUxvGLHXbLK71+TOxgZ7WekVpSyPlebA1/Veyv3HFYbG6aELm/6Tf/JPqFQrtvhlGlMq1UiThDSO8RyX1eVl/sO//R/wX/83/zUlP2Bmaop+r8NwMEApRZwk7K+tsby8zBNPPEEYRmxvbxNleSPK5XLm+DUYa8A92sdh0UgADpq5Solf/cqX+dm/9Je4cPY8U40poiTmqSfO8b0f/4Q4g77JqzlnDs5hovng+hpbu7/L808/xXPPPUO5VLIhm9qwvdvizp11rly9yo21NbRxcaSHkNZ36MA0JcCFMIzY32/hXDwLnnUYwxiScMjq0gJPXTjLpXeuECllmfGhcT9gYsW5GPV1gtlofO6klFy6dImtra0sFX3fRlT4HsPBALShXCrxq7/yV9ja2OT22k3mZmdxpINKFcPhEG0Mzf0m7XabhYUFzp+Pee+99+j1eqNaU0EQMBgMssjAg9m4H835iB8CcObUCb74uc+yNDeDJ2KEsDldBZrAd/A8y+gOBAz7zSRVvH/lQ6aEz4mFJYzrgech/QCvWsEXgnQYEakhCQO6gwikRAoHnSfqzFCrfGXtNffpDQY0ShWiJCQeDokGHSqezZuRDELSkRvJYWNfjkxNMgHeaxNrrYnjmH/wD/4BwpFUajUMGt/3iMIQrRSe4/LEhQv81m/+Fv/4H/1DqtUq1WqNXrdDq9VmerpBlCSsr6/z1FNPc+78eTa3ttjd3mU4HDIY9FleXiQcDjOfqkLJlRGaejzlt+RzmFu2PGm4ePYU//v/+O/y/DMXadTLgCZKFL/0M1/k8pWr3N7pYpTJzI2CYaz58Vvvsbq0yJPnzuCl9hBVRpPEMf1h3/rtGEOSpLjSw/PLGN0fIQcHK8j+VUphVMrpE/MsL07x7LMXeeLcKX7/j77JdruLwKEAHh6al/Es88et3ePGxXVdvvGNbwCQKjWqXC+FJBpG1Kt16tUaf/u3/n3W124jkczOziEwRKGtoq21Zmtri9OnT7Oysko4HPK9732P4XCI4zgEgU0F0e/3R+0ZF2omtXeio7bRVAKPv/pXfpG/+x/8+8xN15DCBn9EacJcxeelZy/y6g9epx8nIKRNVqgtonDz9gY/fP0Nfu3LP4vrgCKl3+0T9rv0hiHbrSZ3trdptdu02+1MyT3wdzSYUfj29eu32N3dp172UVojlabkuzz31BNc/egG3UFKKQhwM7eJKNT0+l3rm9zvEUcxgWurnruOzHLo5JG493N4GqIo5I033hj5VgnA9zyi4T4qTSgFAZ/79Gdp7bX4zp9+m0Z9Cs9x6ff7bGxuU6vWiJVhc3eXRrmElh631re5cesm3V6PqekpGtMVdpshSZIShUOkI6hXyyzPNyj7DlpZgEFIiVIpgRAkrkNQUjZKzPdBGYyjcIXEyRQ+rdIsM7wiTlM8oZlrlIgTTaxsYsRev4tWiv4w5tqtLS5/9BGDMAQBqdEIDW5mHraAguDEyjJz01NgbLi+UYYwiuj1e3QGfZqdDjt7++zs7rK9vW3PCK1tMnqtJrp3fBL+PZPowYUfoSlVS+w2d1l76zYrJ1ZIkgjXqVtHtzhCOhKVxHz25Zf5j//D/4g3f/IGH13+kLW1G1y+/B5RHPIP/+F/jyMk/+pf/S5xnDI3t8DtW7cZDIe4rku/P8RxfX76p3+a1197jVZr3/6+yWsuHTjGFpmRAGtmsleQRuE7hl/6+b/M3/3bf5Pl2TnczEkW4OmnzjFVr7Dds+KPlX+U/QkpwbFFL7fafXZ/9AavvvEWgR/YStNZdMUgim3WZANCBiMY3XDg1JW3NVWa3d19YqXQqUW0hNA4DtQqPufPnOTG2m12mj2U0SgEeUXq+1sYBaaf2bKLYcyOY8sBvPr97+H5PsOwjyMNvucw6A1ApzgCpho1/nf/2/+Yf/Y//k9s3L5DOBzw+uuv0Wzu8dWv/h6+51IulW1kX73Gzs4uW1vW5HPnzh083+f8hQssLS3xve98D0wWwokejcUkhlv0ZZJSIjHUSj5ffOVTnJ6rURIJQtrClkoZdKrwHHAdmyJfYxOo2fxoEqklewPFDy5f48JQs7qySmQ8epQI3QqxJ0m1y36zz0a7S6gVju+htMTJtFhtzMjsI4Sg1W3THXRJp33iJGJ/f5etzV3SaEi15NHpD2wEUYY45H5rNtHlZM+nu89rlpNEGqr1CtduXKXXH/DSKy8j0LiOwKQKk6R4jsNAK77y5Z+j09rn+vVrfLi3x7vvv8u16x/heR43bqxZHzutMUZRrdbZ3LxDmipUGnPhwhnK1Qpf/oVf4Bu/Zw9rM0rKM+74XBS4c78ZG9loshIhQsDMVIO/87d/i8+8/CJl35YgwNg9cHplkafOn2F9+xJG2TT5GIORDnv9kD/+7vdZXVxiaW4Gpa2vWeREqESRqoRE2ejQWqNBdxDT7ffQRmUmVmn3gZFZ+Z2UWIW4vsFxDdLx+fSnnqbVbvHHf/oqvShBCZkVFs2E6GzOzOjCeM/vRQYccH0HjeI73/kulVrVKnoYe2DHCUIbTKo4ubLKf/J/+D/y9a9/jZtXr9Nut7n05iX6/R7/4z/9n3Ckw1e/+nWSOGRudpbbt2/TbDYRQrCzs4Pv+zzzzDPs7+3z/uUro2gmyWQhZ5IA5AiBJwQvvfAs/96v/xpzsw18BzA2U69KI8JhwtzMFKXARbX7GOGgkWAS0JphmvCjN3/CiZV5nnn6PL5XJpERe4Mmu/v7dIYDmt0emzt7NAcDYiRaZiZLKbIGazSaTrdPvxdS9t1M8VH4vmR2usHMdB1NyPzsrI32c4rnA0w1GpSNRu83kUIQhzGddiczvQisJ/wIHjxCQgqMYzCOZmNnAyfL1ZT50aPSIZIYRyg8KfnNv/7XESql22yz2V/n0us/Ymdrm7Xb67z1/vs0GnVEmjBTq2C05uatm1QqVRJ8ZEnR7kecP3+B7736PVzXodTukSYxK/NTpIEFDhSaasm3jv6pzIpyW3RTS0UsNGU/oOTbvGAm82FUcUKsFPV6GdeDVBm0FvT6A/qDkHaS0AkHGJHSaJRQOiLKarYhJFoIapUKQbnE2TNneOG5i+i0T7+9j4psqRIjNLFOabfatFo9Op0+/UGfKAyJkyRbj9IGUefIjxAT3Tw+Dt3L1PvgeX5UanNIYIjikH6/x6VLr1GpVnjr7TfY3LTZRq9dvcrXqjV6WfHSza1NVpaXuH79Q3a2txj0+jhSZjktSpw9c87WU8qKpuYIwocffmQdn3Pty2SVfSY4WObOhRbmNpnWqTl76gR/5Ze+wux0g3LJRyhFkiiEiVmcn2F+boqtzpZNuiZtro08zbqREq0lCocoVfTCAcJk9V2yQqDKWHuvwPoLITOfIzS2GKat3yIQKGW4s7HJ3v4+gUhIkhiNwfddStowM1vn5MklOt0hg1jZqcsZ8P0uBpMLQLY9OdqgtCKKIxxHkiQxQsKHH17m1e9/lyuXr7Cztc1P3voxV69etRqX0iRhxHDQZ3FxiaWlRTa3Nqxw49gK99KRo6KmefviOMbzPLa3t0e1cICscOhhJnucz09+jyPh+Wee5Bd+5i9RdQWOSNEiRRtbCFClKZ5kxPDyxa6NyQ47SQJs9YfsfPA+pevXEVlV9zx5XBxFbDb3aYUhru9Tli7DMEGrrK15rbOsbb1en9vrd5gqCzrNfbb2ttnZ3yeKYwLPw5GSROdIYvHAnIACHep44fUYE9bGjBwrjYBUJezv7/Laj35kNdI3X2dvb4v9/X3W76xRCqwfVL1ep9/vs7KyxK21mzRbLdqtNoHv47kuU40GiwtLI0ahtc03Escx7773HlEc4XvBoQPy6DqcIAyZggIiBT/zM1/kC5//NKXAwZXgSJu3KIljUCknVxYQOkUlGmMOTMZa+qzvdvjXf/DHfOVnfoqlpQV7JrouXhBAIuh0OwyjmJm5RW6uX6Hb7UHua1ewH1vZzaJGyiS4jsJzNHjwzMWzvPPu+5nPlrZasimch8eYm+8lAOXfUSolThOkI0lUQpzEvP3WWwz6Pd588xJv/eRNPM/j/Q/e4/e+9rtEYYTjOmxvbXPq9GmmpqbY3dnh5s1buNKatQLP4fSpU4fyRSVJguM43Lhxw4aQG5PtBasYyMzpe1xpPOiPPYQkmtXFOf7W3/gNTp9YxncEAltoNI4ihoMBg15k9UNhUGmEkR44mcpg5U22Ok3++b/5N1x46zTPPfM0Wmu6nS57rSZ7e/vcWd9kv9UlAZT0rCCSmaOEPDBZttodmq0ui/PTSJnxEWxdqaXFJXrDzSx4xmZGFq7L1NQURhiGSULU7xOFQ9qdFju7e/R7obXgHMrmkGf4PzyraZowHPaJ0wglNFrbsh4ffvghzWaT3d1dhDBsbe7Q6YTs7+1z7epVW/ohCFheWWFjfYP17S3Wd7cpVSuUHMGZlWVqpTIbW7uUSj26gxBcn4+uX6fd67O5vUtQLlP2XeKwTxwOmJ2u2ZqXUqCNQrseynFItCbN/NYCV+A5knKpZOuFGcjjqpTWuBjqtRqlICDNSmH4jsF1Jdq15n5hDKXApdVpsN9s0+p0GAwjVldX+fW/9mv0uh2mp+pcPLnCdM1HmpCw30MlKQhDrDWdVot2q0O326Xf7xKFQ3SGuFmlJMu6Poo0OB6ZPLLvHtLJuUgPJPxorfiv/qv/O1obtre2UKlic3OD/+bv/T3QijQK8XyPOE1Rg8hWWXZdXv7CZ9nf2+T22g2a+/sYjIU4tWRhYYFOp88Pf/gjmxgQqynbgqaGDz74AIxmerqB4zjE8d3rRAGZOcQmvSp5Hr/wcz/HkxcvUvJ9jFYoldqsmkmE1grP92x+BaFxsNmPLSBqhQhljEVgpMQ4NvePFgZjZBZhdJBw0ZCF0mear+XApoACCHa299nbazJVlggTWwjRcXBdTblc4syZk9xZ36O/3bS+C/kiuVe/73HT7/z2b/ODH/6IzfUNJIL+YMDXv/o1/vj3/xeiQd9mfpaSOIpQoY36OXPWogBvv/k6mzu7dl60JtGGWq2GIx3ee+9doige/X6apni+z/b2NgYoeQHVapVer3dXGP6IBmqsGedzn36F2Zk6rmMABUbb9ZZGJGGEVgmuZKK7au74rowmUYr9YZ80tuHcQtiQ2jiO0a4kqJSJQ4FwDKkWhMNo7FmZ0B9FbGxusjhTptey9vper4tSqRU2M8EnP5QMxVP0mHm6q0ABa2u3+M//i/+cMAyJwwiVpnz00Uf8V//lfwkqJY0jvMAjShL0MEQagx/4vPK5z3D71jVanS79LICAzJFyZmaGdqvFm2++OWprXtk9SRLee/ddpJBUp6tZQdUD1O5gno6uzWLLpTDMz8/yv/q1X2FmuoanFcLYpJJhFBKGA6J4yHSjjoOx2rhws9w7tkK9EpJ3r93gzvYWzz39JKdOrzI3P0vgOJTLVYbxFt0wob2xy43NXVKkDe3O8gYZU2iTOBBBjVaYNMUogys11Vol803LBB9jlVM5ydMpZ9ZHZmry1P63/+1/S2N6mutXryER9Ho9/sk//Ef4jiSOhjYhHIZ0GGKSBCkFz3/qReKww6XXf8jm+tZo7owxTDUaJEnEpUuXRvsKrPAjpeT69esAVCrWfzIcDrO23D2JocHGqJYCj7/6q7/CZ15+gZInkWjr+6JS0jgkCvukqQKVolVCqmKEESM/mvz/iRC0woRL73/ETz64Csbyj1Qp0sSOPULa/FhWMzrgDRmf1UYwjFJ29po8eeHUaL1pbaOT6vUarueQpiGDXpvQVdRKDUaGcWNodrtcv3WLN3/yDmt31km0Ro8c4/Oe5/N1eEFvbGzwJ9/8E5r7TQIh0cawfvMmW2u3R5GxNz78EGEEaZpy/foN9nd2OXniJFc/uML29h5RZIMxVJwiS4ZqpcqNa9dtEE2SjNwJloYhzWaL3d1dHEdS9aokSUxfG3akVU4WnAB6MeEgJikHBL6H5ziEqSBJIPAEU40qwi8hPBt9VVTCJAYXm7rAcySuNPhuhaBUwg18qtUSM/UaUZTQ7vVpttrsNVt0ul0+99nP8JWf+0u88+7b1Mpl5qaqBB7oeECaWL6ktKGfpvQ6XTqdNp1Omyiyfqy2yHmSbbARQ8RMsD5+0uavB3R4Nrzx3e9QKpeYFwEV16cth5xIFWe8EkG1ROp6XOu1eXnhNFXhEksFjQa3A5c7N7eJw9BWlHUdjDJUSmV6vSHDTEvJf0drG5pqjN2M5VIZYzRxGNvcHXeT/DKTgwAW5mf5wmc/Q8lzkdjsl0kaE0cRURTa0F44YCxSYWs62aRc6DwMVmZRZNJC6lLnwWejatoih/MAe8FmABQym9msENz+fpvmfovSYhVPjGViNZp6tcLpk0u0uh16g4jUZM/LpWTuLhEft2RuXPmA9uYGJelxzi1xWyTMojivPaarM/i+z0e9NnP1ZU7Uy1ZLnJpiuyK4+e5leq22LWLrOAgDvuuPokvSrKqz9b9IqGfFGfM2Vcpl+t1eQZg7mOviv4N5tUjE8tIiX/j8Z/EdiTDpKCEmSqHjGJVEmPSwKU0UnnMgSBlbCFSb3BhihVNtsggJieO5iNRBCIOnPZvzJlVo49hnGsug4zhh7dYaC9Mlwm7TJiLLiqIqZc0yWlimWyxdcZyz8FF49uidvXaHt179Lo7jsiJK7ElBIlLOJorTpQqeX6WLYctEPL9wikA6EEhq1RmuJwnt/X10quzecxyMUvieN0LARmvH5KaqXBszVMtlVJISK52lN3BGSN8hn6DCzB2Ynw3PPf0Up1dXbP4PYQWcQRba2xt0iZIYz3UR2MMDKXCl9VWwgisoIdnt9vnOa5dw33iTRqPBVK3CicU5Oq0WH15foxvZqu5INzM9F/NlWQTIaDPqr1K2GG6OZOsMHdEmQ2xNLtwds6OO22hHJSXeu/Q6tUqVmuNzSnisy4hl43JO+NQqUziezwedJk/MnWEGDyEMjfoCbyUpNz66TjQYIrK5Q2t8zyOOQsIwPCSUJklyKG2I73nUKhXiMHwA5FjwxIVz/Opf+UVq1TJS6IM8PWlMHA2Jw9DWoVIhWkWgFUiVTzpGGOs8rh0UKssTq6y7QRb6LoxNKyEzITqve2gyuFujSbPCywmGrc1tkjglKOXlbYAsr9swHNJq75MuzqApI6RAYVBa0+x0WdvY4PK1m9zZtBF++f4UHJzB9plHF3O30+b2tWsILajKrASO0ug0xSmasYXG9yTnT69wtlrH9cv8pNWk02qidIojBI7jEjgu1VKFrtomimKU1jhSZDl83IM9KAWNepVOu02UaprdAWGSstex0X1T9QphrUK1UqZcKlHWDkpElIxH3a8gKzWrhGelL4RR1jUgtT432iIEOK4Nk0c6TDkOdQRhmDAYDClXAmZmGiwtL2KM5vnnniAJuyzONqhXK5QloBO0ikHHGJWgtEal4Pke5XKZIEumKgRZdv48B58Z7aFPVsyZTA+W5FAIfmP1BO1hj4bjocoO76QxC75kxihUnBBGA5qtHX7YaeMJCa6k/lFIZ2+faGCjcaQjOXvmLHEU2bTvxQQtwtYmSpLU5h7J1DaRr9LC4X/X5FyZAPTyiy/y5BPnkUZhlMmc8RKijHFYR9HcyRm0kQe2R2VwpaQ+Vf3/E/fnQZZm53kn9jvn2+6eN/esJWuv7qrq6r3R2AEuAASAEElJo5EpUtKMJsbyRMzYHscoYuTwH1LI9vzr8ChshRUjaWSOQ6JECQRJUSRBEY3G0gC6G41ea19yX+9+v/2c4z/O993MrKpudJOU5mMUupiVN/Pes77v8z7v8xBUKoyGI0ajMehiY0u7YQ02RbTvyUxQn9bUFBcfe4z1tXX2d3etRDuG0XjMcDRmYaaClBplSpKnvfYcCQvzbWa3GkTRuIDfXYtFlaU9Hr1gzJE09+jzyZk5Lk5NsTPssVyv8ZMkIvVhDnDTEKMz4mGf6/0O97U1EhV5AzPdZHc8IFcKx/VoT00xOzPLeBxOgp7JGilKSvYyK99jUXooLtQPS2qTQvL8s09zdvkErjB2Y5GjpSZLErI0Ic9TK5VuDuXgjyJvUvj+CAfbdq+L0qUtVrrSwQSBracbheM6uL6P0inSiKLLwY67Vpper89gMCQdj0iTmCxLCwuD4mer4nB5H8TnYeTrg/GD+UrAXz52gtXuHscDn/2gyi0iFl2HepZgjFVj3Rl2eUXs4DkuwneZqSfsD/tEcYTBSvBfOHeOwWBghfIeeJRS5AV6QPn2ZdkyfRTnOAh8jqJ35dcF4HoOTz95hXrFRxZltSRNiOKQ4WhAFIekqSHNM9sirTVWYqAYIwlG2QCoiIdJU0W832N7e4fbN28ghSDHIRMeRtp2X4OcrAlRBFFlUhWGoUVItEIpTZJkdHs9oiRBY1u1jXF48PkwQPvhA/3w8+XFY9SkIE4ipqs1Xk8jaoHLnDaYOCTNE8bDDm+GfXxjTU2b/oBunjEYjzDGrtGlpSUqvk+WZQ8UUe1TEp8nk1eM4wdpgj34VCo+P/PZz7C4MGcFRZVC5bk1H01C4jiyc2UMWZ5bdfpicLSxZqqm4NLoQmdp4ocnORznUPZbiUlhBhBWr0YgULlCFwTqza0d+oMBbdmwNjSZ9bQKgoA0TwmjPlIqXE+CI8Cx6O3W7jbvXr/BtVu3rbUCwgY/5XHxU8YkiBVzA0UauKRO+VpBeWtNKBlCohBUqw2SKYd4HKFyq9jsCwcvCDi+dIw4isjSbJLLlp9b5fnExDQrAjPX960Eg7CdpeNRjBNl+OOY5sBn1GrQbjZotZpMtQRKCLR0aLRnCRpNhEoReY5QxYGklT33Sh6isX8X2G7WQAiMcKi4LvWKTyOtWdNWbXAcQavmo5IxrbqP7xrIU1SuMEahVEaSxsRZzjgzjEYJg8GAwWhkKS3m8FlS0jEOjf1HLGX9tLX8frpy5fORkZ/t3Q7ak+zlEVGasobhvgpxVUpiMlJtGLsBsrhUZG5Y6sWEiUS4FaZbAY4r+cVf/CWeuHKFl1/+Dv/6679VHFCAsRwBg8YPXCzhzfJFyg+jtT7CMbHPYTjeQtVV3+eF556j4gokqihx2E0cxzFxnBAXF5cwhRKssZdbJfB58plnefqZp1heXub4sUX29jr8k3/yT3j3nXdAqAkSI4TECKv+LIz9upSSr37tK/zar/01/v7f+/vsbe9CUUKL0phuf0AYt3BQaJOjgTTTmCJDqFZ82q0Gm9s75EoVQZY4dP+8X/hz9MsGM7m49rp9Wrmh72iG/S5becpGarijIzKdkGGIpEMuHDwjELmhGuY0XIWSAc2pBo4jeerpZ/irv/IrbG1u8U//6T+lP+wjROFALAXaaIJC9NCSavUREbDJjB1a7A8uZAH4UvLY2bPUPAenuKiUztDSkOWKTGlybUhzUNrCcAaJMQqDQGl7EC0uLDI1NUWjUWe/s8d7771HFIbWwsHkiOKidIVH4FYwWUJWQLR+M+DM6fOsrqzS7/XQSiOFZDQKCcMIlaaoLLPE2ywmy2wQaRQWSSzWx+HP+GH0YR789yTJWN/aIXThxrBPP024pwzreoTQGbFOiTVEjodrBFKBSHOO90LizCWotKjWKrRaLf7G3/jPaLen+PrXf4uXX/42h60opOPgen5hwFkE2WUkcyhge7+grfy6NLYbpN2sc+mxc/iuJWXnSUYS28QjzzLyLCdPFWmSoJUq+B6HgtgyMRD2AgAQ5XoSAoWD1mJClJWFydSE61ZuiOIzGANhGBNFGZ4ErSRxnNPZ6xGFERhZ7BpTVquPlLgefMSjYh1xdK4Btnf3mapUGArN1jBiSysGnTHXjSbRCYnWhMJBa4MjBFIrpgYhvnFwnBq1RgXpOPzM5z/PF7/4Rd566y3+2T/7n5HioCgnC4uJwx2WZcD3QWur7MoTWKbV8YVZPvPJF/GkAWNpArZ9OSZKYpI0JU0zwlgxDEOyXE+G2CIxtkkjqNWYabfxfQ+lcjp7e4wGQ6vijC076pL/IWShHu1Qq9X4y3/lr7CxtsE3//APUblF4Pf29tna3qHZqOE6fnFhu7TabSqVqk0+MCgMYRIzThN29va4c+8u125cY3N7C2WsAfIB2lO+8QLle2BcAEZ7Pfq3N3BOLWCmajiuh8R27GmtJwgpQuAHAdJ1SXJFFoX4vsd0u4UjPObn5/gv/ubfJE1TfvM3f5NubwdlDIYcV9j70vdcKoFXBBOKKByj8qwod9r1n2eGNI9JopB0PGI8bjIYhYRhSrvdpJlUaTRbtBotUClJGJLEEUmakqcJWZLa7SBsc4Gx2SMIkAa0zjDCwZGCiu9BESw6wmDShEFnnyDwSLGBsTD2v1mWkcQpUZoySjJGw4jRoEeWZniVBjgZuc7Q+gAtPrISH3Emvl+F50OhmD/lWz5a8AO8PB5Y49LCFiIzgkilIBykH+D4HvO1KpVKQLVWo1Gvc2b5FOPhkFu3bhHFYzrdDpub25w6dYbHL11GqX+N6zkkqW2jlNKgdY7ve/a3GlDF5VmqAjxcJpmMCmDPzXarwdnTJwp3X43ObSu+FURLSLOM8TgkGtsuJxx7UdWqVb7ylS/jeS5nz5zm6tUrfP0bv82v/dqv0ppq8nf+zv+ZTnd3wukpSXlleOZIQaNZ55OfeBEB7Hc6Vj8mt5F3FOesrG2wOD8FOgNhsxWDDex8z6FeDWjUA2q+i8qyIhu1WZIpM1sMD6l0TZ6DTL2EUd/LY1ZjW4aT0kFLFyUyOkbhBlWk79HwfSrVKvVGnWqlysz0NHMzM8xMzdDvW9n1/f0u91fWeOKJJ9DYICGOY8AUXT6KaiUo5qa0LyhT9w//NBt1Lp47Y1Efo6EgYSulrYGfNihtSNKcKI4QhQu7BvzA4/SpC0w1p4mGYy5fvMpwNOKTL36Gc6ce4/d///fopj0Uxc8uXujgIclB226hL37hC/ylv/if8Pf+3t+n3+3Z75Mw6A3pD4aQjTFZWpT+YjApjmO7dqx6rFvEDY8O9D4Mcc8YGBjFS0kIqVUmRzooYwizFMdzkF6Tiu/RCgIq1QqtZotqpcKZU6fp7OyysrbGaDwiDENWVtdot2dYWjqGMeAIF0EOQhd2LxLP9SgRO20LCHacOIq8PlQlOPQFz5HMtKdYXJhFFt5qOs/Is4Q8SdGZbc/Vxnaw2EzwwG5AG0OuM4wwOK6LUtb7yIBVbUZakq0pWCZFubq8xiZhlMCiScX+GY9j4lRjHFC5IYxzRqOYKEwwuUV1i41WfKiDvz8oBvzIgOgBdAzgx1mKz0Hmq6RHJmMSbXBqVVzPYybwCSoBjXqDSqXC4sICNS/g5q1bjMOY3f09tvZ2Wd1Y59ITV8jzHNfxSE2GoKQJaGq1GofVtSfcs8mcPezMjpBIA77r8NxTVzl18hgCg85zlEpI0tAaOUcRUZQQxQnDMGNja49efwTYi9MVkkrF59z5xzl/8Rxz83McP36cVqtFv9/lH/+jf8z9u/ft/AISeUAslxLhSGbmZ/n5L/083/j6bxflGosajMcho1FEtdqgUbPBjjYjXAmuNMRxSBhHpColSiWD0ZB7qyvsdvaI08RyN03JLyk//6Ey+/tsxfvDDv/8rVc4G57j8uXLtKenwXMwSmIKjhyAdF3cSoVqtUa9NYU5fhIZBKysrNLvDcizlM3tDa4+9RTzJ5ZQN6+TaisMKbU902r1Or7nkCSCTBtrWporhAPGOIiCw2SrDTndOCKNE3rdPt1uj7n5GU6fWqbZaBVdyZaXOh6HDEdjsiRC5XmBeNtGHNcRBRpnwGjyPEdj7ShUERgZY8gwpBLCIZMzXQpJEHi2NFqssRxdEM9j8jxmOAp5794ug8GQcWrI8iLIPAx7/a/wfORur2DeKqvWajVqtTr1oM50u83CwiLN9hSt6Tbtdhu/4hP4ni1dac3u9g7Df/Uvub9yjyiK+cZv/zZb29t89atfndSqD7gPlnkeVALbZlh0gJVif8ADp46AwhOIiZ2CsG2QrTrSKPIsRecZqriosjQjy3LG4xFRHKJ0BkoiHJef/bnPMzc/C0bz4ovPk2vF62+8zi//xV/iiScvs3Bsnv3ubtFeaA8Sx5EFVG67FGZnZ7l44SI3btxgY2sLZUxRf7WaCpvb2+zuLxGGQxypmZluUqlVcVyPiusipGCmVWem6ZPHY0yuiizYQU+y4JIv9OEiZqdeo74wfzB3lRr1So2lhQWm52ZpTLVoT09TbzaoVqu4josEsiTlj2p/xHe/+10QgveuXWNjc4O/+3f/HtVabUKGLS8t17XdKI7joHVm4WutJy23D3J8Dh/GosjapdEcX1xg+dgS5Dmg0blC5xmZyQnDMWEcWdi9HHcEGInrSi5fvsT5c49z++Y9PvWpT/GJT3yMf/AP/l8sLizw6U9/hh//+Md0u/0i0xcHS0oUfm+OQ9VxePLqVfzAJ8kShCvRuSLPodsPWV3dpFkxSGOVeK2QnUezViHORtZeAYMpkMo/TYeC8FzqS/MEQUC1WqVetfM3NzPLwuICjakpWu0pptpT+EGFarWCIyy3587t2/zmb/4mw9GQvb09fv3X/xd++ZfH1Ov1CUJS7jwhBK7jUAmsKCTCNh+U3Zfl/P20zyKETWDarQbNWhXynCxNyDLrUJ3nuV0Pxd4+4I1RyBUY6tUKZ89fYXFpgbm5ORxH8tprr/HO22+RxjH6UNHEcvIOCsITtKrYHwWWY39XlpHlOSrNUbkiTjJUIatu12Wp/yKKC4GD9TFBXt//eRSJ35+eYqrdtnNXq1MLKjQaFY4tLjE1M02jPWWFJ+s1giCwnZQIhv0+v/WNb/DmW2+Tpinf+c53WFlZ4f/03/63eIFPEh1weQwUAodBwf0zE+TnwQDogdmy/+dYi4inr16h4kqrw6KLjD6KCrTcIuajUchwlFhLCgGOkFYvzHP44hd+nhMnlrh+6xq/9qu/wtbWFn/80rf4W/+7/4rbt+7zz+7/zwWx3cGU5TBRUhoEC4sLVKoV9nZ37fst3qVtgtHU61XqtUoxx5p2o0rFc8izlDi1oolpnhKnCUiBQpMbUFg/Pyy986FxMA/MbTmuXrXK1NISsYHdwYC55WWa0y1qjRqVShUEdk5rNZS2fleuazlZQaOBkQ7+zhbX3rvGP/vn/z/+t1NN3GqFOE3IlEIUqLYorCV8zwomKizKnKYp0vUQQlpbmGLODBKlYBwmhCJmMBzR7XU4dfIktVoNKYXVnAP6CKIoJo3DQusKpLBCtJWqjyh5Xdq2v+cqI82NtaJQmlxl1m3BGmNOrISEFAS+W/gtMmkiiaKYOI4Yhwnb+0NWNzt2LQpZNFLbwOcoQvvAqvwQCPmjXvNhn49sbPq3//v/nhMnTlKpVq0hW25LTFJK4iwlzTOyLEOXZaY4olapcu78OWbn5lhZW8EASZLQ6/et8qSwtV0K+L1ea/DxFz/OK6/8gNWVVbI8Z25+3rYU/pSTp7yAhYDF+TlajZptw8xSsqRsbY6Ik4QkSUnihDhJJoee7zpcvHCB8XjEyZMnmJ2d5uXvfR8wBNUKhfwhxhTGmkibmShTICouYJibX6Ber3Pv3j3G45GFGctsVmm2dvZ49Y23kVJz8dwpKrUGQeGxJLBExfnZGS6cO0XgBaxsdjGxskZ8WPSnWD3vMw4PH3J//pd+ia987Ws0W01c17PkXwWulCR5RqoysjRDFfynJE1AG44tLnL6zGle+cEPEFKSq5zROCRXOY1mswgCS2KL5Llnn+fEiWUWFhbZ2tpiYWGBarX6votZiMOdUbbmLQxMt6eoBb4N+rTtNsnyjESlxElEXLTR58YhS9NJBua5PmfPnmN1fY35hVmuXHmcvb09VlZW+NSnP1XodMiDCw6JbbEFhLBuxcbQrNc5ffoMt2/fodPrFReKJewlqWF7p4+72GC6WSn8mWJcT6AJ6I1j0ji3PnCTK/pP/pw4cZL/y9/9e7RaLQLfx5EOUhtc4aC0Is2teWGeK3KtiZMMoxLaU1OcOn2WWr1uCd1SEkYh/cGApaUlWzpSehInLC4s8Mwzz3Ln9j36/QG+7zE7O8t4OEIgyIsuzJIT9EFons4Vs+0pPAF5mpDEIUmSFH5x2eS1udJ2PRWHI1LQmm7xC1/5Kt1ul7PnznLy5DK7u9v8/f/r/41/+A//3/zuN75hEwJhDYNLXo8UtuQijEU8Tp06jef53L13F2M0ubJIYZJkCJWQpRnD4ZAwCo/6X00C9T99cioQ/Bd/62/x5NNPU61WLR9LG1yhkUIQZylZUVrKCmQzS2N81+PEiWWOHzvBO+9dtxINec5gOERISaVSpZt3ivKgJdN+8hOfotPtMDM9y2Bo5ziJk0lgp5SacIAOfVgMGikc6pWAsydPWuVdlZPnGWmakKbWLTwMI3q9HmGUkGagiqRS4mC0ZvnUST7xiRd56+03efqppzl39hwvf/s7bG1s4UqHq1ev4vl+sY40unjvkzYNIVhcWkJrbf3MDj2O49BoNgmCANd1LPleCiqBw3SrQZblE+8+KW1bNwX/yZbMLc9HlEvWHPzO93sM8NQzT/N/+N//13ieR7PVpNFoIryCnFO8VitlSz5xUpgD5zTqda5cusTmyip5HHP6xEnG45BGpUoj8HGFJlepTTAcuHj5MS4+fpF33n2LLN2g6fvU6zU6HYlRGiGURceK9yUBU4jk2vFTaKU4fmzJWhJ5AkdrVJIhhCRTiihJybMcR7g2YVcGT9iGDqV0IaLIhFKgSjRHW0QIrQsnBzXpdAt8l4nSCJClKWEU0xuG7HaGbO/1UVDw9gpMtrwuDiXEj9w7fwoe0J8p50cIwcnjyzTqDbuYMmUzJm0PGmVyK8xXiASqQpxvOBpx7do1eoM+RtivC0cyCse4nod0XBtJ2tSbJE549Uevsd/pUq3V0eMxzWaTvT3rMF12NxwcwrYz4+CKsSFSs1nHqIxMpZjctrbHaWqFCaOYMNUkaWbbtLFdHlE85u2338RxHM6ePYV0HF75wStcuvQ4szPTvPTtb7O+vo50HaYaTYQAz/FwhGTx2BKPPfYYgR8wO91GCMGNGzcmE6GL+qiQDp3BmE7/BidOLHFOenhBdWLpQYEkzM3NEnguy8vncF97i5u3V1CpQohD/gkf4XSen1tgdmbOQrW5bTfVuZ6UHpRRhemcLS+qop59/eZNbt+9a7XibKEdjWE0HuF5PuqwtL023L59l15vSLVSw3FcarWaDQ6K4KREER4pdFimX8JQrfhW02PiuqRRKmMcjgnDiEF/QJzkxIpDyKHlDuztW42M/nBArVHn+3/0CloYjp88QZykjKPYpn/IootGooWDdFykm+P6OdMzM0xPt3n7nXeJwpg8yxHaBoZGOIxChZABjdYUqAylDU4GCo/A8wnj3HYCynKe/uTXaCWocHzpOEordK7I8tzW63VauNqrgjBMkRHatvtOp8v169cJo9giHwWyMhyPqFYrtmulIH4LBMP+iFe+/wOSJKVSqSGkoV5voLWi5P9MujGdh0nBUAAu2qDyDN91UUlKavKi1JyQZhblybUiUzlhFLG9u0+a5YCH47r80i/9EsJA4Pl87atfZXNrm9/6+tf5yle+yle/8lVe+qN/z7A/mLiMHyb1WhTIMNWY4r/72/8dW5vb/D//x/+RKBwDNriNkxidRuRpRr/fY39v37qKa1u6/TA2Hh/lWZxfYKoxRa7ywgNRkRTleGUUGl3sPVl0nEGa5/zkrbdZ29ycnE8IrN6TtqbCSumiLV+gcs1bb71FmmbW7HU0olqtkqZpUbIs2vgfkCwA7AWqFUuz08xNtSxSp2OyNLZ8kSRmOLR+aBubmxjh0GjP0+8N0LktEQvH0Gw1COMIx3U4e/Ysea557bUfc+H8YwRelfFojJCO1VMzB52FxhgqlYBmo86Vq0/QH/bZ3NqwKJwRE45XUCDKQtgGBqFzAsfQqgX0BpZ8LYpgWBl7xmWZ7UCiLInahXywXn9K+aU5NcX0/Jy97KUkyVObCBg9eZk2BqM0JQaN0SRRSHdvj5rrE2hB269RwyXrjTg5N8eTF89yf2WF/d4YHMH2/i7f/f73GY1ClNLU/ODg/QEYbcu9BhwEQlr9Jlm8fc9xuHTpAp/51Iu4rhUa1UYzHo/pDYbs7O0TRSOkkLiujxQ5gTFMzc2g08h2VZYoYdHAc3icjDHkRdBTymFY7Tir01y+zTTNGAyGdIcxO3sD+sMQBRapNVgdPYCDKvp/mOengEYfuexVtvnZNlSJERojraR4mmdkeVYcRlZaG1dipC4udney6YQQxHGM77k0Gg26+13KkQjDkD/+4z9GAwsLCyzML7C5uVloIegJUiCEOCTaVRQ+isNQCqj4HnmWEKuYPLMEyyhO6A36dHtDUu2zt9cjCmO0luQmJ08ivvnNP+Dy5Sc4uXyS1bV1pJD8p3/lP2V/b5+V+/c5c/o00+1pfvkXf5FW00rSr62scfWpqyAEWZKQxBFKK67fuE57eopxOGac2DZ/ZStgKGXY7/RYXV3n5LE5qkEFKZ3i/UuatQay6FB77uknSeKEO/fXSUxmOQxI1AfO1oNzZ4MdBEjp2IxfCDR2IecqQ2uDdC0K4riOlWcfjalUKgXPy4b4UgiGgyFzc7OTw6tsF37rrTfxvADP87ly+Qrr6+v4vo9SGs9zj0DwD+yvSW1BCjh5/BiuIw6CH2EzuDTPiNOU7d09tva7KOGS5squBQ1JmvLa669Trbb44s/9PGmW8fobb/DFL32RSrXC7//+NxkOh1SrNVqtJpWqbcWM4phTp05z5sxZKkHA1sYarakW7773LkplVuLAaIS2bIUsE+TaivG5hXR+llv+ReCX7vCTgtKHKhc9OgMqxlbZQo91YC+6NoTthElySxh2XCsUJ6Wdu8ykVCtVy9MrfrfruoyGQ+vB5npEutSAgb29Pb75zW9ijOHs2bMMhwO2NjfJsmyyf8vgp0w8HvVYaQBD4LqWZ6cFSRKT5LbJIMlSlM4ZRWP2Oh129vZtRwhQq9eYX1igt9/hqSevsrR4jN/+xu9MCMiNet2WZKXlQJT7vxxaXSQYL378RS5fucxP3nyTOLaf0XEdpJBEYUgWjUjilH5/wH63Q5ql2K7KA07DAXOOyf9OyMyH/veBBVwMwsG/6aKs5koXZZQ9N4UNUtMsLdzcBdL1EQhcx8VzXVzXw/d8e6bCZA7TJGGqPXXA/8BKTHz/+68gpaRer3PhwgW2tresno62CWdZAjtchhVCIDW4aI4tzNCo+pg8Q6mMPMvI0pwwitnvdLhzb4U33n4P3IBTZy9wZ2W1kGyxnXzvXXuPbr+H40h+4Wtf4979FcZhxCc/9Rnu31/l937v9+3FXmtQqfq4nker1WRxYZ4XP/4irVaTEydPsLW1Q68/sEhzmtluXW2NMMv1JzBUgwqNWpWTxxaRzj5SgutKXM9FpClZlhLFNnHRJUfz0Vvv4TVcjLk2hhyDFuA40vppJQmpymx5Uko7B5kmD60NiaVrWA6d43m4vk+92SBQitxoZmdmuHzxIsIokvguSZpz/8497t+5jyMETz/9FKtra6iRmnSjCXSxryadOWAUQhg8V3Lxwln+5t/4VU4cnwcTkSvJsDfg3v0Vbt69x8r6FkkSI6SD7wX4lRq1JGNmfgGJKLrVjF2b2HJ+qfcrjbR/hBUBnjTSGIqO7eKM0po4Tuj2x6xudtjqhCSZKkjuD/jmTboFHh18Ptg08FG5kj/t+cjBj8BmDlma4bjWa0TgEHgBtWp1EnXn2l4WRlnSlu96HD92jDgas3r/HkZCtbh0KtUqzdYUQeCzu71VcAAsBD09NUOlUuHOndvo3EwS6HID2AHRB++uMDaVUtBs1IrW2pQ8zUjShHEYst/tsLa+zSAyvHntHmmmrJQwRQeJ1jz/wnNcOHeOnd09Pv7Cx3CFBKV55smnee7pZ/D9gDi0Vhxzc/MYranXa/zglR/Qaja4cOEC3W6XU6dOcvrcaa69d407vR5K50jAFeBIhySKuXPnHkvzbTzpMjczg3QdJJKKF+A0IIwTplsNTp1cYm9/n84oLmrlDsLIgvvw8Ew9uHhKEkSW2lZmU4yflA7NRguEmWxkpbX9d20I/IBWq8WZ06fpdvYxWtGaahInMbV6Dek4LB87xsbGum09VxqtE/ygwvLyKe7evTfJOA/zfcoAtnyPk8WtNVLAVKNhcTxzwAWyvCGHOFXs9Yf0xyE5kjR30Maxh3BxLjxx/jyPX7rE7t4ezzzzDBcvXGC/02FhcY6f+dnPce/ePb7wxS/Q7/c4ffo0P3nrHZ5/7nl6vT6NWo2l+QV6/RGrq2ssL5+i19mnu7dHbgzSWIPb4TghShVVt4AuTY4rNFPNCsNxxDBWBanaHP2M5byYDwZn7WtEQYUrzAyLQM+auApq1To1WZuQaXNd6noYYikIqgGnTp0kSyJW7t3B831cR1IJfDzPZWFhgTiO6Q66xd5LkNJhcXEBpXMG/T66CNaPlCiL8jKICQegRF5xHBzh4gUuxiiSNCOKRsQqJclToiRmHIXs7O5z8/Y6K/dXUQaMFERxzMvfeRkHwc9+7nOMRiPeeustPvnJT1Cv1XjrrbesJ53j2LCwOA9KXSApBFIKnnvuOZRRfPeV71rR0snZlNLr74NKiMKMzqDHKIqsSm5RiimHXIBtnRcwAdJLqF6UodHR8/HoX8pHo1VOkqb2fSuFQOO5HpVK1ZYxpCyUpTVGWa6Y6/oszC9y5tRptjc3Cc2YdrNFlqY0ajWqlYDZmRlW11ftuZxbcdK56gzHjx1jfX212DcaVzgPXyTCEl89B04dW+DnPvdpAldiVIpAW96I65IqRac/4N76NtfurNEdRPzwJzcsh9Hogjon6I8j/MGQv/5rv8r0zDxvvfUOv/hLf4HlU6e5d/8+n//Zn0UJ+PznP4/jCpZPLbO3u8upU6cJAp80jm3AIBwuXrgISvPaj17FKI3nVy0nJctxhNU7EkJQr1VZnGujdW47e4VdCxJjOwujiCzPjnB6Dj4/xb59eN8V/4IjHTzpoUyOgyBPbcnWNQ5SCRwsEi6lwK/W7I8TYJSiKn0Wp6fR4zGqPYXWmqlahaDi02o0OXfmLHGcsrm1xzCMSTOFcCQLiwtsbG2i8gxnQrUoNefEpNQlJfie4InHTvPXf/WvcOn8KVAxeZwSRRlrq1vcXV3nrXdvsLa1SZZn+H5AUKkwNdVmbnaa/d6AqVYDg09OXpw32oojUlZUbOZRnsMl8CClRAvX8qpyRZLkjMKE/ihlOM4I47RQGLfJeqm9daTzlfdHWh8VAH3YwOenfd9HDn4a9RqtqSmEEKRJSpZZTZMSVi01VIQxkNuyiRSCWrXC8smT3Ll9E6MVjhDMz8+hjK1Bz87PU6/V2NnZtheCsVnOzRs38LyAILAZkTFFVH2IyHfAP6CYIwNGofKMPDdoDZkyjJOMYRjRGYxY2dzhjffusbY9INUSI82EtiIQHF86Rq1S4xtf/wZvvfUT/of/4f/O9s4ug36fcBzy3HPPcX17h5MnT6K0olavc+fOXf7Zr/86rXqNX/mVX0FrxemzZ3j77bfY3txEZ5mFKR0B0kyyuP5gwBs/eRuvQA/arWZBIJS4QQWUZpz3OTbT4onzJ3nr+j16YUoubSBgW0XFkTEoPwkcLKBarcJ0u42gsLpIChE/VQaQRRZpsAaTBRm1Xm/QaDRZWlggSxMwmumZaRxX2kPV8zh3/jw7O1vkeXFFGMN4NOall14iy3M8zz+C8DyYgZZaExiDaxStapVj87MErovjFFmvttycTAkG44hhnJIjSZQhUwZl7MY1wsUYQb1e59jSIi9969t897vfZW5ujrm5WdIs4dSZk1y68hhpmpLmKQpDvVEHAX/0R99EAk8/9TQylMwvHqc5FTPo9cm15ZMoY0uHu7td2g2XubaPylOkyfFdwbH5NiC5vbZLrOUk+Jvo5xRZ1ZF5e2CvTjavANd1mGq1mFiqKF0Qdi20raXN1kzpl2MUxoDjSirVCqeXT/He228hMASeS7s9hdJWVO3E0gn29vfoDrqT92aM5kc/+hFSSmq1Ghjbwow4WnYGC2crbJAq7QlpAwfHdk4iDEkSEaUhcZYQp5Znt7m9xfWbK/zk7bvsd/sYWQEhSfOc67du8ulPfIKFY4u89uPXWDy2wFe/9lXevfYe3/rWt/CDoAjcFukP+5aYmyum21asU6C4/MQVbt66xebmJggrZaG1IstiBsMuNd8hN4pxEpFqRaZtR8vk8prENtJeBA+BPI8IWx9VyhX23Gy3m5PGgCzNrNmk0pZHWGTRlBY/hS5Ks95gbmaWdT9AaoNjYG5mFqMNjjS0mnXOnj3D2sYKpeaYQLK9s205M4KiPHlUVX2y95C4QnBipsX/5pe/wnNXLyGxCLCQtsSe5SnD0ZjOIGR9t0MvzIhyQ56EuI6D8DzbPl74qAnp8NzzLwCC73znu8zOzlKrN9jc2uKFj73A3MIcFy6c5zvfeZn5uXn6gyHNqTb/9nd+h9XVVa5euUK9VuPSpUt861v/Hi00UoJwPbr9IXGa43jWbgOhcT1Je6qGZBrX9fAkYHLbcZRlJElOrsqs+cE5fBhtPRIgGoMrXKYqLVzPQauEOInQwlgOi+1DwYiylGjJ8rpICjwNM40G2VSTKIrI8wypcmpelXa9StVfJB6PEQa2dvbpj8coY3j5O98hjlOmWg27gIyacJXs3WjXqXCgNdXgl/78l7ly8TSezhFaEo5jNjZ3eO/6bd585xbvXL9Fp2+12uqNBu2pKVIlUdqQqYzA86l4Ab7j4zswXXPx3SLIEuLo4VT8VQppA3ldCJHqhHGkGI5zRlFOrg2ivJsLayNE6ZtQnIGHz7n/yM9HDn6SJGZ/zyoka62Zmpo9dEpoW88zFHo35crQDAY9Xn/th9y+dQ2rGCfZ2tzgle+/QhSF9PsjxuMRnudZyNfzqFYCMJalXuqOaKOt6BwFz6gg8MniwJUShLZZlsqzooYpSJUmTFL6YYwSHpnx2OmNGSQZ0q1QDQLG0RgjbKfWxz/+Iu++d51vv/Qt8jxjZWWF/mDI9va2dUQ3mlarxXA4nHSPeZ7Pf/Nf/zdUqwHVICBJY1588QXeevONibK1RhcCYVZVuKzL7nY6vPHmmzgCTi+fYqrZJHAdpLEZoFA5M/UKU4+fo+o5/Ojt23TjfFL2elDzqPjikYWlVU6vu0+SJIzHY2Zm5pDSmczdQRHWHJo7Q54l3L59g3fefIPRqIfnOfS6+7z55k9IogSD5sbNGwUJs2L92vyASmCNT8sLX4iDAGDSgVJAxPYNGhwMU7WAz3/yYzxx8RxC5xjXZlZ5YfQaRgn9wRiNRBkbgBlK40aDxFCt1XjyiauEwyHfffllOnv71GtVRqMRw36fn7zxY5599lnG4zFzc/N0dvcJfI9bN2/S2d8n8HyGgwG1eoOvfvWrfP3f/Bu2trZR2h48ooCF4yhm0OtRd2tIFL7n0Kw1EG6DKBP4233SVE/O3Ee3GU+qfQcz+BAXCuJozGg0IooifD+gXq0jjMTKralJ8GgL9iU6o+js7/DGG6+ysXYf1xEolbG2usJrr/4IoxUrqysorfF9v/jjEVQq5HlOksTWhFRYXpgj3YPSg9I4brF+jqCLIIym3ayzfPJYITVhBdxQCpNlpFHMsD/m/v11Vta2yY07abOXrkOr2eJrX/sajucSRSFf/NKXyJWi3+/z1//zv84f/eE3uXLlEs1mk9nZWQb9PnGScfbsOYSAG+9dY25ugT/+1ksMh6MJglj1HM6eXqZaqeA5hjDOrHFj+REmIMAhSP7o1Hzg837HuFY5nc4eSZKQJinT7WmcUvm9yHztZSAm84exQeP16+/w3ntvE8djPM+hs7/La6++Sr/fI4pDbt+5heu6eI4k8H0qQQXHcYjjCCmdCZG75EhOEHMDUmhmahV++Ss/z89+5kVaNQ/HMSDsORXHMVtbW6yubXD7ziq3720QZpoc6wGVY5ifmSVODWFiUaczp09z4vhxvvud7/KHf/j7fPnLX2HQ79LZ3+Pll7/NoN+n6nu0my12NjZBa1bv3ydNUs6eOsOp5dO4jsN4MCAc2cAA6dLpDXj19Td55pmr+MEUrrBhtxCGIPBtkF4E37myHl9GmwM9nmJ+9MEMf+CclY8BRmFElkX0B3s0Gw0arTouAmRhPC2KpLusPGA5R0kcMuh18FyBqHpkGWRpSDg2BK4kzzRz01OWBykFTscn0walDCpXONIpYuxDKOOhGK5aCfi5n/k8zzzzLK7rYXROEmdsbG5z89Z93r1+m3ur6+z3B8Sp5dlF3R6jKGYqjEmyhFSl+J5L4Pg0600aVZ+6X7OBrJikxFhhguK8KlUq7QwU94RFpdM0J4ozolSTalmINNoAShyqzhwZ40eW+49WBH4aObr8/g/7fGSRw9/45/9fdna2rRS35/HlL3+VkyeXsWTUHNeVxJEty9TrdZI0YXd3l9df/wH7++ssLc2wvLyANoL5hSW2NlepVT2efeZTHFs6zvXr13ny6pNMT0+jdc725jb/4l/8BpVqwGhs/ZOc4pDM8tyqDguJKRCEgsKKLwQzzSYuoB2JWxBvwzSlrh0SpYnzjNKs+viJE8RpjHAkX/va10BIdvd2+Ku/9ldxXQdHSs6cOcXyyRMYY6x5ZZbT7fbodXpE44j7K6tcu/Ye/UGXOBozHg3oD/rsbO+g8hR7yIHGQUuJ73s4QiOMxJCzvbvHD1/7MYPBkFPLy8xMTVH1PdumrzWOdGg3Gzx/9QrSrfKja3fZ6o/JH7UYzMML4bVXf8ibb75OlmWEYcjzz7/Apz/9aaQUKJ1ZR14M41FoOxqEoNfrcfPWLa6/9wa+b3jy6mNgJPVGE9cVdMdDnrh8ieeff571jQ1q1TqXL11CqRw/8PnH//ifMByMkEXWneemkHA/QH/sqrXz4As4d/IEv/DFn6dVDXBMDsohTmPGcUq/P6TbHzEKE5SxiqoaWRDPBZ7jEFTrPHblEq6El156mdnZORrNBrdu32Z6eobZ2bkJ8nLq5DKOay/0ZqPBaDjm85/9HHmW0et2uX37Fitra7z37rtFRedAkdZgrMCbcBCOQy3wmZmZpt5sE2WSzV3brWK0LsQOjyJxk5DofSD3w0+3t8//9D/9A3Z2doijmOnpGX7xa3+emZlZlM5J8gQ/8Bn2BwRBlaBSIRyP2d7e5tUfvsygv8fZcyfwPR+DYHZugbW1FaZnp3numefxgwr3VlZ44YUXqAQ2gP3Rj37IH/3RH+IHPgbbCeJIZyLwJoUo0DiDLHWnDAgj8B3JZz/xMR47ewqhMzsvjouo1JDCYTiIyHPNcBQRpzmNmRmizHaZ6ExRC3xOnTzO5sYa/+pf/Us+/omPc/78OXZ3t7l85RJf/NLPc+7cWV7+9rd54YXnuHHtBufOnWdza5tWq8XcwjxIh83NbY4fO04chvT2d5ibm+H0yRM066BViuqN0FohnYKweSj+p7zQjDlwrfkTPMbAH/z+7zIY9MnynDRN+fmf+wJPPfkkUkKcRghXkMYxeaaYalpUbm9vj7fffpu7d95hZrrK3MwVlDbMzS8yHHbRGp57/mM8fukSN2/eZPn0GZaXlzG5IksT/tE/+v8QBIXZp1aQ57iuN9lzjhDUA4/Pvfg8P/+5TzLVqOI6Bo2aiBru7uxx7+4qN27e5e13b7LfG5GZQiRQFDpPQjDVbuEnKfPzC/y5L36RjY01bt+5xRe+8HM061XeefttHrtwnrRIvHzHZXF2jt5ggMoy9oY7VHyftdVVXvvhq2xvbbK7vcl4NLR7wgi0Mqytb3D33gqN+gUCT+BoW86y/Cj3gAenrDWGNtZOJVdH2ZEPgOMf+Ny9e4t/+A//HwyGPbROOXVqmS996UtUgqpF6pTCdRzC0Zj2VJsgCJBCksQho1EPUHguuI5LxXdRWhGPBtQDj3pthmq1yvTMHJ/4zOfpjkK8SoV/9+/+He+89e4hpfXD6ItFBQNPcvWJy/zCV75ErVrB5BlxGLHb6XDzzgrvXLvNu9dust3pE8YZmSkaWZQmDUMSpYizmDAKadRrVLyANAdt6rhCUw/smDqOtAiOtBpuhwfOFOev1tbQ1PN8/KCGdDKSbESSaZQpLC1EIUAqJBhVFtMst+gjciHfr2v4UX9/v+cjBz+DQYe5uWn29/dRecK3/vgPKA3mgsAnCKzJmnBtWater+N5Hs8+e4VTpxbo9ToMh0O2tvaoV32SSFAJXOJoxHjcZ29vh+9977tIKRj0u8RxgsGqMlPUPSfogb1BJ/wDWSBArjGcPXGcZ65cph64GOMQeC5eNSDVsNddY3d/nzTNMEYQpQnvXb/OsePHOH1mmevXr/PK9/4OP/P5z7O0tEi302V9dY2tzU06nQ5hGNHvD2zL5zgqrGpMgQAlBRKh0CpD6cx2Uyljvb2K9NIgcP0Knos1N9U5OovZ2eswHr/JaBxy/sxpppqNQuRLUa34TLenqQRVcqfKXqLovHuLNE7LGS8m6tHzt7u7xRNPXGI4HKKVw7X33mR9/Q4qz3E9B993CXzrC9SebtOensb3PJYWm/zCL/wcnb0Og0Gf7a1dpOsDknotYG+vw3DYZzQccP/eCqurKwyHfdI0ptPZtW310qqWHhabLXWbTNl9gqHheXzmhedYXpzDFxqnaFs22jAKY3b3+3R6Q8I4JU2VbV+1yQiuY31q5mfapNGYf/u7v83TV5/hi1/8Ap7vkeeK4XBEr9vBMbC1vsGdm7fY2d2l2+kyHI0JxxHD4cCKX8YhYRQSJwnROEZPEq8DtMYAvl+l3Z6hVfeYn5ulUmuy37f6K7allw91yH7QE47H5FnETLvBbhYxGu7zu7/7b2zzgSsQjqBaq+AIQaVSZW7O7j3Xc/n85z7G/u4ew36fzn6PXn9IoxYwHjoYoxjHY9I8Y3Nzg5e+/W1UnjEc9BkMByAUSqV27pQBz3JTjCo62Uq0osDkReGLtbg0x6c//gLtehWXHAT4nov0vIIj0GUwShhHGTmCRmuKmUqdtY1dmq0mX/uFX8BozW/8y3/BjZvXefqZp9ja3qTT3ePb3/42jXqNeqXC0sICo8EAMIwGfX77t75Ov9/n05/5rC3Z1WvMzy9w58ZN0IbFxUVqtRqel5Mo28Ltuh6+7wNH7T4emrI/8Rwa9na3OH7iGL1eD4Hi1Ve/x5tvvGoDLEfjBw6e7+Jgz82pqTau43Dh/DHm5z7PoNun3x+wublLveqjspRq1SeMQ8bjMf3BkL3X3+Ddd99l0O2SZRFZHuOoItDWCi2c4u8FCmIMTzx2gb/457/CXLuFQFuncJ2TpDGbm5vcunOflfUtbt9dYWevgzGy4HzYS1lj2NrZxfMGLCwssbiwwMsvf5uXX/4WX/7Sl2kW/KS93V1+/NqrJGnK5vo6+5198ixnb2+fNLedmkmSFPYqBfKl1QSh0hiMNGRZzurqBiePz9Nu1XBMjskSKwQoBK5nfeey1Or85EqRKz2xUPowQc+D6Gy/30WSUa+6DIYD1jdW+Be/+S/JlcEXgoojqVeqCIQlMj9+iVazSRKleK7EqwdI404MXVUuUCk4xuAIqHsenU6fd999j0EUs9/t0Nnft80YlYB+n0liWh5CQbXCJ154ml/7lf+E+fkFjM7Is5Rer8+9+2vcubvKnbsr7Ox3GUYpuRHkwqIwSMe2nqcZ+WBIkiZUhz4VN6A3GNNvNRhPN2m36tSrVaqBT8VzsSwq54AgIVxMYVKc5IZMQZIbwtT+N9OgjIBCg8tA6To1mQsxgVz/bJ8Pow/0kYOfd995Z4K6HOZtWMb+HNPTTZTvInJY3xgyOztLtVrj7NkzNBrHmZ9vc+vWHe7cvY/jSB577AJbW9v86IffL2rQDoFfo1L1qNWr1OpTtNtTRFFCGI4nthau61KRjiUMelY+XRiNZzQ11+Hzn/w4p04cw3dccEDkgjBNCEdj7t9fYXNzC60V4CIF5GnG2uoaW5vreJ6L71a49d4NG2wZG+2WLX6lcrGa1ObFZCxE0YuojcJo2/ovimzYXoKF2Brgei6eJ8FIJArjOmRxTBQn3L57jygMOXv6FO1mk6qjaU81aDUbSDxmp9scm5+j3dggilNb/vopl+zm+gZROESp4lLWtmZeq9VpTzVYXJpF5R6e77G7t0GSjqjX6xw/foz5hTZTrRrraw5bmzsMBkOeeupphDH85PXX2Fi9hxAOrgwYVWtU6gHVqseZ0yeJ44zxOMJxpJVGoOiaKMdTSgQGVwhOn1jg6asXqXoSgX2PSguiJGOv02Wv22M4CklSRa4F2hTBT7HYVZZxf3WV7N4KRjjsbu9j9B9ZdCtX9lBMYlSeTeD/UnvGxtKm0DSJSOKYLM1I4oQ8z4oD9GBTGWMKWw2XWq1Js+ET+BVcaXUzdK4wSnFYTfZ9N6X44C6UOI544/UfW7Qpy23bvTD4XkCzWWducQZBnSDwGI8SoqjP/Pw8jXqd5eVlGrXjDHsN4ihidW2dM2fP06jXuHHtPV7+4z9EOi5gSw31ukelmlOte7Sn58kzB0c6aGH3vOu4tuvD2PWPU753a2nhCcmVi+c5tTSHL4X1eRMOnucRZjnj8YDd/R5r6zv0h2MMgvsrqywdO8Hlxy/yzLPPMtNu85OfvMHnPvcZrl69Sr1WQ2UpTz7xBJ1Od9J92G63GY9GTE+1kFLyl/7CLyMdF8d1iOOYF557npU7d+js7xK4glqtUrRLa5LYBj++7xU8oXE5s0f4f+XWeojj8xAN4uB7H5zL27fvsLm5SZolhVifwRGSeq3O1HSdhaU2Rvu4rmB9/S5xMketUuH06TM06nPMzbS5d3eFtbUN4iTm8UuPEUYjfvTDV7l1/R3AwfOq1GpVqrWcSs3QaC2QRLC/38eRctIp6zgOGE3Vk3z6+aucmGvgO7kNfpQiUynDYZ/bd+9x694q12/e4869NauNhIcUEo20HJ9CzDKKI9bX19jd2ZmQYX/0/R9OCPIlNaBMXlVJoTIUZdWCi1QkQ3ZtKQpjMIs2aojSnO3tXba39lBpk5oHIk/BGDxpEVijDXmWk2WKPM9Rednp9Sd7+r0eP379J+Q6Q6kU4UhwXBzHo91scObEcaQA33Xp7G+zsV4laU9TDaq4TqFKrovzoxCONDonyzPiNCHNrQhvNBygtaERBDx+/ix5ZjWo0qiPIwyuK6hVaywdW+TFF17g6aef4vjxRQyKNEvp97ps7XW5dWeF69fvsLa+yShKyI0oEHJBSWFGUFgqKSQZBkGCJoxyxuOQwWhIvValWa+zMDNNu1GnGni28cdQdG8ZjLCdcKlxiJRklGrGScooTclM4TV25NwrBURLIP0oGv4fk//zkTk/w9G40FlwC2KrAqwE+rFjszz55BUcF8CqQQaVgDRJGY86dDo91lbXuXPnHjvb2wBIeZ5Lj53l1MlFQJDGEVE0IooVUaLo9W0ruu/bbLbX7SGExHU9C6Np8KRES6t+6aqE43NtnrryOBXPwZGWeJkqw2g8JAxDNre26fYHqEKx0sFMLmChBSY3ZHlKTnpQ8zQHdUpBEYAfIqAZDEKXG1djhJ4o2NrgyRRGqMWiMcpqlDguRguE8HHcCp5fQ+oURwj2ugMazT61Wo2pmkel4ltn7CzHV4qlVoPTC7OM+gNGSYaRLgbnSE148hgI4wg5LKZdCIxROFKSJClBEPDM00/SnKpSktb9wC+Cu4zN9XsMeiNu3brHnTur5AoWFmZpT1X40s9/HHSKUoZoHDMOQ8axpjccMw5DskyxML+EVpr+YISU0nYsFTQjIWxre8WVPP3kJRbn2ziOBqEI0xCVS/rjEYPxqIBtlaVEiILtUmhflB06uS7o20ozGg4L9WVTaM8c8B8sZyyfXEZJkk0CoTAMCaOILE2tt45WpVEHhxo2MVhhS+l6+EHFruE0ZTQcMhqMLDKDy4E5i3x4boo1VRLgH3UA5Jli0BlZfpRjF6CQgoycLM+5cPYc58+fRkgbrAthCHyfNEnp7G0yGAy5f2eFu3fX2Njao1INOHnyGB974TJaWxJ7NM6J4hHDccx4rBmMI8ZRSqs1zfz8LKNRZJsHsrzwcLNjbnVGRLGfBe1GlaevXKQVOLiFd5orLJcnznM63Q4ra2usrm8wjhIMVudre2uXXnfA/fv3+a3f+i0uPnaBJ596klq1ytjz2VrbYDQe0+11bbCq9ISXFCe287IMaJIsJY0TOvs9uvv76KIMW5Uak8VWvl/ZtSAdB9dxCs06W6I8CGBMwVd4xIY6whopvlscpj8dILHDwYg0SSf8NoHGOII4MZyZXuKF556lUvXA5GiTE/gBKs9JkgEbe1163RG3b61w994KlVqDerPCiePTTH/hBYTISWNr2DqOIsZjRb8bMQwjjPBoz84ADmEYAdY7zBVwammGpy+fxpWx5WJJl1zlREnE2vo6Kxub3Lx9j3feu0N/nKGFx0Hzf1HyEFZ0zxH2Ns2yzNpsCIdRNqaUwChJbdqog7Kvsbov+SELBbAoVUnsn/wuU1yQmeHm3VVOLR+nEvgYX+IJTdXzcIQtwSS5NWLNc1uWLjmBh2fu/Z6HVJ+xvnqDwago24B0chypcX3wpeDC+TMsLEzjuw4Che96eI4CE9EfjJFS4LmOdak3ObnJSU2GQqOFQUiDI3LadQevUifXwiY4ecLCVMCF5Vlc12FxYZ5Tp06wsLhg7V7ykP29TVqtJkkSsrq9xbvv3uHarTV2OgPCTJNqQS6s/YvRJedGlOwbMJJcSXLloYRDnCkG4YCdTg8poF6tcurkcY7NzTA/NUWrWeOAXFLYz2iL0JsiuUyTiCxLUMKKI5b6VCW3rSQ+C1P2KR/iMz04Sf8BY6GPrvOjC1VVWbYq66KNTbGzu02nM8fxkws4joPrOhahqbhkWU69HqB1RpbHVCou4XjInTu3UWnG9uY2aZKRJ5osVXZTeT6O59FstpFSkGWa9nSbM2fOs7q2xnAwspeXxqI1EjyZc+bUCRYXZnAcCk0CiJKUwWDE9u4um5vbJElmSzCyNDC0x92BJ07JSOdo4HPwz5Nn0vEqBaU3EYaygQpMKa9vX1i2KhavtlYV0kE6Dp7QuHj2cFSKJMtxXEtCdT1LkBZa40vBbLPO6flZtra2ieLegW9NucCOPFZkUSltY0Y7jciCfBbFIfdX7vDkU49b+L0gnUspLRlPNBmPhuRZjOdZHY27d+9Q8332t3YZ9UeFGmzhsu74GBxaUy0yJ8Vohe97XLx4EQ3cvnUHkRcdT9oghWG6VefCmZN4jgGToY2xWZGUhWdPNpnPUtvFfjT7NW3MZMgF4iB7l3a7lgT5EqWzLtUJo9GQ8Xh8kCmWwmhK2XJBAb8fvhJFMckaMMbqXrmOFW9LspTesM9wPAYjJ3ymch4+8o4u1p/KDdKFUkxSFJ9ZAGsrKywttZmZaSGk1R3yPI9axbOKylmM0jEIRbNZo9PdI89Chv0R+7vdwmA0J8sVCAfpePiFv5zjWJfxdnua5VNneOfttxmNhqji0JPaCq6BwUWwONvm3MlFqjLH1QahHDAOCkE0HtPt9tje2mG/0yNThkIjfoIQ5L0eCMHrr/+Y119/rSCQWo0Rpa0Qp1KlP1Gh8VNQCiRWqG0S8Cq7FiQCVEYWjVAFt6/cw+WFwOGZOTRFH9SK+77PAxtQKY1SNvCYrCWhEcJj0O+xubHKxcfO4LoOUlp7A1cGdu/NtOh2u2QqploLMGju3LmJg2F3a5s4TCbIijYC6QQI6TDVmiXKUpRR+EHAqVNn6fV67Kyv4xvD46eOMV33yfOImAwPnyRN2djc4fadFW7fWeXe/U2G44w8l+iC+G4KxtuE42VDd6BICpVtPDFGT9Twy3E8HOQcGWFzIH9RSpeUumHlT1cF/Wq302NtY4ul+TkCt2Y9IKXElQ6ZNgW3sBTjMwVCb7sSH5zbh6ft4X+0HYI5wvGRsjDN1RpDThpF3Ltzi+n2FRr1Fo50cR2Jh1VX9n27HhWGXOfWdyyOieIxWhVGrFpjyPA9y1uUQiK1xJcenucyNdWk0ajRarWoVyukUUQURXR7XWYXZ6nWXZIsZq/XZXO3wzjOGIxTEgW5kShk4Xt39OOX56RSkGtpkXm09fTK7TwM4xH98C5rm9vMtlo8duE8rWaDqu8hMVZRPlfkWU4URoSjMeE4JM9VkTjbRPrwnVQmF4cDoj/L51G6QI96PnLwY1TpmG0XopQajWLQH3Ivu8eF86fBLNj6Zq6K0hJgDI1GjWeeeZLl5RNcu36bO3fX2N7ewhEeaaqJ49zCqr6PK11rFOe5+K5LrV5jfX0Hx7G6OmmWE47vIhyBJwWea/PrinA5e+YUjXqNAh4gSXL29/bZ399nY2Ob7Z090txmOkYXhxDCoibl5+SgA+PBTqqD///g64fjGcOBps3RWTk0MeLgDwiEIxGOg5CiELLSSCRxkiGkY1s4PftHIqkYQ7vVYm5uhsX5WbqDkFBBdgSXeGDuCsVmnecoUwSwSJI4ZWtrm+l2lSeuPmYvWpVPLnVjDJ7ncPr0MjPtWe7f3+Kd926yv99hP05xCBjGIIUH0sH1HGu4qHKUyqnXq+R5xnAwYmlpmfmlBVZW1sjTMsMzOMJwbH6G48fmcV3BgVcbk++ZEKRL8nDZgll2BBwJXC0sYQoeQ5ZlxGOrUpskCUmaFFINmRXfS5Kitf9osPvISocpD32KboRDa0YIlFKE4Zg0S4sXHMps/gSxz8HiUhjjWH4DtnMnzxTdXh90xlPPXJ5wqPI8LcoG9pdOtZu88OLznDnb4933brNyf4219U18t0mceOjcRYgM1wPX8eyv1cK2yvs+u9tdZmYXOHbsGBvra8RxZNeIpujwtN1vjlHMT7WYqvsYHRYwu4eSDjoXRGHEaDBiOBiTpDnayCKANMXHNJM51pmVz7frdpKrooUuAsIi+BN2TqQGLQ4OPXvAmokMmEaQKoMSErfcJ8bq6pTo33+oVNNoq15tNbCwHVUaxmHE6uoaJ08uoPVpi4g6YIwq+/fwA4+Lj59ncekYt26v8d57t9jZ3UMahzwPCCPbPStdD0/YxCVTOUYppppVev0RaWSYmZ6l1Ziit73DsfYUzzx5Gc+XZColNQodRezu7vPezbvcvrvOxsYu3V5okQHjYpREFCUqux4PFMYmqZ0WFvXWJTZgjpyXR3N8c1D7otSxOXSmHpoNYw62UpamrK6tc/bUcaZaVZDSqkYXLf26IDtnSpNpRZortCiQyj/BBrRni8GQk08k5QRpnrPf6VKpuTzNE7a93ShQNjx0jcDxpBWXxaCkJlEZ+719Br2+PeeLsmCYhAghESpFOD6uC+DgOFa80u71lNHQ7unhaEgYjllcmicZRWxvbbJ2/z55Yi2Koigkz/Tk05bViQdBFptI2jNWCLcgNssiZ7fjNE4ywqTPXm9MN8qYmZ5maW6GdrOOJyHLYBBm9GPFMDWMMkiUIFfFXpaT34QUhbRJuYQoz82PNCV/Js9HD360KhaR5WrYA0RiNKjMMOiNyBJFre5Z5AW7WK2lgSXLzUxP8+LHnmf55Cleeul7bG3tE+ca4XpIx8N1PBzp47oB0tF4vsD3ReE+K9nf7ZGnUK20iLIRjhD4roMvNI3A5/jiIp7j2r1lBFGYsLfXYWenw+bGDlGUYoStWVsp8oNOMXEow5+oWD7w2MnTD3y1lE63EfOki+mDxvLQzSqEQDpyggoJI5HSkCnNYDjmzGKz8AWy8u51HBIk0zO2JBHlcGt103YfFRnSkfcubLaSpQngIooWSl0gVAoIRxFJmFLxfVzHbgorqpfbzaNcKkHAxYtnOHb8GK+99hPeeusaw/EQ4zoYYbvqXMduIk9lGJHTaFXo9yOUMgwHY4JgzFRrljzZI83GSCE4tjTHc09fYrrVoFqtEXiODSIf4VpfHoIlhFoKAYqijbeUaE+SlDhO6Pf7jIcjojCZmLDq0qxTWyuR8jMeRCcfvBuFTYIRxcaVxXiqPCeOYmvsl1j0irIt1Pz0HOeRNe/yMtf2PWpkoSALCI3JIU5zuv0hM3NtqhWrjaSVJs+zwoPHdmzMzc/yiek280vzfPc7P6TX7ZIbg3CEVYV2PaT0CqHIhHrN8lCkESRRxvraNoHfpNlI0WkXqUuzw+JzGkMlcAtFdQfpWmE9pRW5Euzs2ARkf79HnlnUp0RGS4SLyf6zJVFRwvaHINcJXC4OvlbqsmhjrA4T2iY2BcijHI/UQKoUfuFFpQsX6yzL/lS8kJ/2CHKMSdHa4hjGCJQ2VvJCC7r9EWGU0GpV8T1RIH15gWCBFg7VRsCVq+eZX5rhle+9yr0766SJDfgsWhTYdmdpMJlFPpsNl1Efolyzu9WhVqmxvHSGjz99iscunLGISpaT6oz1jU3W1ja5v77N6sYWe50BcaLIjYPBLTJ2q9xtR0ofWa9lGCRKPghlflImJUBhHTLRE5vMtP1zBBSHA5RclBe1VRgeRxFhnJDr4iQurGqMUeS5Jk4VozBiv9ujPxoV6IrzJ8o9EAZFbrsCpYMSpfQGOAZGcUJvPKY9M4UsvCZyY9E+jUYXVk9KGIwDGYp+NEJnOV7R+ZrlKY50yE2I4+STZe0Yi3bqvT0atTrVas3KF2TgeVWkkQz7Q27fuMXayjo6r9HtdMjSFApFZi2YJBjlnJQn3EGCfzDeFiUyEyPqUl8oTDPWtnfZ2utwd2WVRsWjVa9SrdQwCKIkZ5hpImUs6lQkMQ9nfIeV4Q+SzEedfR9F1PCjPh85+FlcWKDXH5Ck+YTwqIsDKklyrr17iwsXztNo1PE8WTg12wxBF+S1IAjwjeD06VOcOH6f3d0BnqcR0kEWon0WVSqIltrQ7yf4bpvF+TOcXX6K02fP0uvv8fXf/HVMNsRzPXwpmZ9rMzc/azPIXJEZQ2e/x/5+n92dLptbe1Z3xcjiQLWTc0R7haNT9XAd2Dy0gQ4fzA8/B+H2Yd2CB39uWcqRwsER1qIDo+kPhlRr56hUq7jGSt47TkAmXSp+j+npNm61yVZvSNgbFJfiw+9iZmYa33MsybSsryttvboUbKzvcPvWCs89/ySBHxSdHwXvqfB7cT0fKSXVWpULF05z/fptosgUBzlkuUIp+32VSpVcRYyjnCSVnDj+OI9feIaLj13hi1+o87/8+j/i7q03aTXrPPfME1w8e5xa1cFzrT3DQanwwTEqFUYPWRs4lv8Tx5av0+11GQwGhGFIFMU20FEHU3SgUCwOSKAcBKQlCvR+j722VQn22442HNI0JwwTwiglzfUh+xHBo46B8mf9tMf3febmZ9nf76OVsgebHRCEEERxxttvXefkyRM06jW790SOVqC1DYSEI/ErHq7RXLhwhnffucagFyFlwYdSBqvHY00zjQRtJMNhynT7OMePXeTC+auc/9J53nzzVX7nt/8FRscwOUAVXsVhbm4KlCLPjBVCEzbgGAxj1jd32N7tWL+fEmU7dPmVukfi8KFYkLnKwtSRpOGBkbQNCgXPoPyxxTcqDOMkIU4z6jXJ5BcYixb8BwR+WFycJ05TRuPYIhxF0C4lqNxw5/YKjz9+kfZUC8/3bElEiUlWrsHygLTi5MlFzpw7yerKFjK1XELbWWj9wVxfUq3UMUYxHORI0+L0sWXOLj/OM1ef5dhchcBZp1axbcZ5nLCyvs791Q3Wt/a4u7bNXjckUYDrFUGKKXiOpQmutknvof1YTMHBU6La5U1rDgpaJTfgwT32oJbLA0BFCbfasxtRJDrYRFa4aKNJc0WcpPR6Qzr7PaIoJVeTN3Tolz38pUc99Xqd9vQU/cHAIjjGFImy/dz73SFvvn2NE0vHqDYqtnyU5uTkVvzPFEePdMD1MI7LOE5Aa5QQJIm14ZBSIkmRwiJYUjgIYcnpjXqFNNXIgUWIlALPlayuboLQdDp9xqOQ8ShiOBzZ5IWSbHz0M09OVXGAfuZKIbWy93Q51+Lg+8v7rRQZDpOY4aDHRp7j+RVcv4L0PGscnGSWPjDZtIeTyXJGP1qicTgIej9Ryo/6fGRX9y9/+c9x89ZtfvKTtws3dG0NHR37BtI85dVXf0yWxfzMz3yaWr2KH/hWzTTPcVyPmzfvcfPWHcbj2G5g4RD4hdN2mRlpSRRpmq1Zzp25xKVLz3Dm5GP4bgPhuAjHsJR0OHH8O2ysvmthYqNptGoFKSsnTRRhnLCzs8d+p8fG1ja7e/vWzuJI9AmHcxA7oMVXHzHQgjITPfpv5tD3lGJihyd/ghBMUKHiOBeHfXYkQpYchzLqFgRBEymrdsNh5QSqCHzHYWZqiqBumJuboTeOSXT6yKX17DPPsHRsnu987xX297sIYVBFacFmToLV1Q3u3b3P1auXuHDhrG2Bd2uM4jGe69PtDnnrrbcZDmPu31snHOc4joM2OSorDiJh0FrieS1OHHuMS5ef4+L5q8xOHUO6VTt2IuH55z/Lxuo9zp06xtOXzrE006YWVKxmjLE2G7lS5AZMZnC0g1v4aDmOA5kNwK1uUUq/N2B3b9eWtuLEEloNhy7CQ6dwMa7luJddhPZy1cWdqB9aAweBq7Hy+oVYZeBXMEYTFwKM3f6YNAdVkiQPrY8j6+YQ1+SDOh6mp6f5pV/+RX7ww9e4dv2W7ZQryaPGQRgYj0Je/tb38Fz4/M98Ej/wrK5LaqzUgDK8+e41Nta32e8MWV/bA+MgHXtpaqNsMIyLzH1mZ49z7uwVHn/8GU4unaVea6OlQIgcKQK+852XGA42UCZFYC1bpltVTp+Yx3NycgUitd2Q43HC1k6Hta1d1nc69OOMDAdVoHZHcG8zyUkPpqzcYIfBzMkXC8SgUCS3Z64sBtWWCIUxGJWTJNZ+BSBwPWvxIdNCa+uAjC4e2EDlhXHwNj/48C4P6zKY+8xnP0sUR/zwR68yGIWAFbErEz2lNNfeu8Ubr73Bpz/9AotLsziOhyMrpDrB8wM213d4++13CaOc27fukadWvdmYHHWIYmAIqFVmWD55lkuXn+PsyctM1xfxHIPnZUi1S90fUHGGOMISdDwpGQ6HxHHC/NwcswtVMlw6wzHr29vs9/skqbZt2kpPEFZjBEK4RzJ3U+DispgvUcA2kxC3RNdLJOKB4Zzsjwfn+xARXQAqU+jcTAL83GjSNCeJU8IoodcfsLvfJUmtt5RtzxYP/b7yhz7ycjWGM2fP8PnPfZzvv/IDVtfWbSBdWi1h7UEG3SF/8PvfYmlxhhdeeKbwwBKEcYrnVUhSzfr6Bt1ul729PbqdEY6UeL7tOlRZOkE469UZmo15cCwpX+uE4Tixbgra/m6l7GLc3u+RK2vOu9tP2d8bE2aazJQdefYcs2fuoXEtICCb+9sAyWiLAJfr/CAZOEjblLEkZqNBCxftWDsdkhiRZoUNTqEwj7HJ2SThtD/K9VzrZm8On3MPj70oX/Pguvgpz4f9vo/c6n7j9g2Wlpb4XOuTGGMIk4RXX33Nwna+pNascePmbQQGRwYYLej3Bly/fosbN+6Sa4eV1XXyPEdK6y7ru27xQa1YIcYBJ+DP/bm/zKc++QtUKtOkyrC3uU1nb8Ts4jyuMDhOlQsXL7O1cYs0G+MGhvn5KVzfYERGksV0B0N6/QHd3oDNvX36UUxWKlFPcFeJMYVS7aS+WzYFiofGwP4XKOBbcwgu1+WBLYstOllBtuTnOh6KouSCAHPgkSKlxHFsx0zZ4okwtNotKrUWSldwhEFLiXRdHDwcT1KrW/hzaXGB1Y0dkjjlgbcNwMrqfdrTdT7zmY+z3+mysLDAS3/8Lfr9AUIqao0mg8GQWzfvcPnxS7huQByFdLs7fPvbr+C4AaurW/QHw4lGjy1RFuajwmCkxBjN+fOX+NVf+dvMz11Eoen3Omxs7NKY8mlNtxFInrz6CW5fe4vPfPwEizM1lmbnadaaCMe1yJ1WRHFGmGTEowSZGaS2po9KKYbDIZ1+n053QGevT7fTJ45i645dcIBKB+gjN6gxk8NPcXjuKH6vKS6Sw9yfg9dJKQv/IHCkoNVqUKlUyOMhozBirzNgrzOyomLiAGF4MKZ5KEl+nz0HMB6PuHXnBucvnmF+cZ56s8m9u3e5fu06eZ7jei5B4PLGm29y+tQJHNfqGg0GY15/7S06+wNG44y1tQ2yzHKtHOEgnPJS0MVyNVQqVf7aX/s/8sSVz+LIBmEU0dnZJk5iphZmEMQsHj/FxStP8crLqwhtidiOB8vH5pmfblr9KqFRKiPLrXT/7fvr3F3fYqvTJ9GQC4E2crIPSv8sTInw2XG2XzWTE1kUOw9hA1spSgQJEJZp4mA7i+z32mtA5/ZnWXVnl1azCUKQpQa0fR9aF2q0h5fMI2fs/Z+HlGgN3Lh5nXMXzvK5z3+GwTCk0Wjw0ksvEY7HIAzVeoXVtXX2dnf59GdeBCTjccT6+jav/ugn+H6de3fXGI3DwisJa3Ari7NKFMiVyfnYc1/mL/2F/4p6fYlMQa+zz87WNnOL04hA4zNCEOM4OQhr1ttq1jl//hzHlnMCv06jOUuOpDMes7azxc379xn0R6RJzt5el26vTxRnpMqe20I4D42BFoXdyaFFbo9dM9lP8iDLPKQb9cDeOIzKa4MWmiSM2d/bYzQ/SyAcHCVJBIzCkOE4oj8YMRgMGQxDcnUgL1L8+gK5meRAR9GrQ5/BYNjd3WFnd4vnnnuSM6dPMr+wwI9++BobG1sIo6lVq0gBP37jDT75yY+hEWRK0dnv8e1vfxfPCSx9YdAnSRJrBFrYgBgihAaUDWDrjVn+3M/9TWbbj7G9f42Vjffo7G+Qqi2k0qRJTp5Z8nycKeI4Jk4SRuMxvUHEOM1IhSiEBQ+QNSPMQwGqDUCLZL483owp7iJn0uhxMAf2tVl2SOhQupMz05hskjiWCJ0orGFKPpcQDr7vEccU+/lBAOLw+PP+B+Mjnof5uR/8fMSyl2F/fxtHaqJxzOnTp5lfmqPWCHj77bdpNGpcvvw4a6tr3L19m9/53d9hcXGBTqfL7dsrjEYJCkuK9b2gIMZa5WWdZ4WZqQAhyZVhdXWV/Yt99rs7bG5v093bQmjJMy98jONLC7h+nSefeI43Xn2J4aDP0slZHr94hsCT5CplmIwZRCP6owGbu/us73QJlSGXZUdWQWs+nH6UkGb5kcvMhYcPtcP/PdzRcAQpeGAEJ4gQTBZdiRS5joPjWI9VaSyy4LlO0drokOdq0ipb8X1MlpAbjXQkKskJAn9yacNRsrYxhsGgR7+/x85uytT0NPWaz+d/5tPcvHmT3b0tnrh6wZZQohGv/OCHrKzeo1ar8c4719jfH5LlAiM8HDeYcIIcIWk26/R6XSwV3gaAO7urbO+ssbsDG9ub7O9tkIxjls9c4NkXXsSVHrMzx3n+6ec5thDSbtZpNup4ro+RApXbAyJXhtEwIgpj0jghjiJ6gxGrK6vcWVulM7C8hDTMCcfJZPMePlMPeCQc+uKDK/vgsHvo+w+9rDxNHOkijaZWq3D2zGmqlQqjeECaK/rDiLg0NKUk0x+sow/zPCjrnmUp+/vbRHFIrmB2rs0TTzzO7Gyb9957h4XFac6eXUY4Gbtbu/zWb32DpaVFax9xb5MkNhgCEBLHcZHSgIZ6s8Y4HE3QEIA4GXPr7ns0W2fZXB+yt7vHoLeLHzh85gs/x1TTQcqAp55+kbdf/y7RoGO7+TyXi+fPMNuynC3HMSRxQn8wYnNnj5t317h9b4NemJIirYHogxm43RgFOlAiOOUIUpCrD4jcD8IDR7P24scZ233keS7z83O0mk2qFYFT8fECn/1uCDCxzTn4ae8zXx8wjY86fA2G/c4O7U6dKM5YXFxiZqbJz/7sZ3nnnbfJ8ognn7xEv98jy0Z885v/3uq3GMHbb11n0IswJkAbB8cN8Bw7Np7n4foOw+Hw0O/SrK7fYnNnk+Fgl52dPr3OFmo05MrTT/DY44tIFK6IkeQFKRlq9SrHjy+RKEHgVahVWxjpsKA17XaTdnuKwWBEEsXs7O5x7cZNNrb2EantDipPv0cN0EHJoujoMrrwehKTgGjyynLdF4jZ4Qu7HMtMCQZRxuZOl2OLI4TwicIECURJzO6gz9buHjv7XXJtsCe6MwnEShrKg7P9qHkUQBgO2d/fZjTs4ns+tYrHix9/npX7q6zcv8OFC6dYmJ8Dk3Pjxg2ieMzs7BzvvXuTzY0dtAYv8CaldYuuSpqtKbq9ng36tPWgHMdD7q5sEocLbO+PiKMKgmkUI3KjSHVCksWkSUZ/OCaMbFl/HIXESWY9Dim78Q7vCw721QThOkgiyrEt0XApS0rIBzyTM0pYI95iCdgfb3mJlJ6NRUhrKQbWqupwl+UjE4uPEPg86vkz7fYyBhxpmJ+bZjPbZGXtLvPzC7iuz5nTy8zMTPPsM8/ymU99hn/3b3+PH/zg+6ytrZPnBoR1ie6PQrSx/BPHsUTp+bk59nZ2bTthsTIlmmvX3sIxJ6nW5umN9lCZZcivb97l2LEZhPRYXFrm3LnHuXu7y7NPPcGJY3MYlTCKY/qDITt7+6xvbbG2tmEFnwoHXntuiqJbxHaq2Ik/tPAnUbI+MgZwoJL6YOBz+DlYZEfdzB+cICEkjrRdGq5r0QRprO1Fo1ajWq0SZRmZjvEQNBoNKq7DII6sw7jrQqrp9fpkRQD5YPaEAaNzWs0Gyii2d7fQOmOq2WZmZprpdpPLl65w/vx5Hjt3md/8V/+a9967AQbSVDEzPUOa5dYTZsqqdkdxTLPexHEcut3uwecBhsMuv//vfp/TJz9LmIwYDLcQKmV11XD5iceZajSRTo0nLl7BV6/TatTwK7aVVBcCr7nSJFnOMBwxCMOJKe3q+jq3bt/i/uYmSa6Qjoc09nA56NopPvYjSKwPwd6TITKHuvQO/Yzy5xUQcLF0kFJw5vQyyydP4pkUk2uSKKPTGZIoS2YtEH/eV8/iwfdwuFxy6B1bcUHB4sIc91dXuXfvNvNz83iu5OyZ0yyfWuKZZ57ihede4Ov/5uvcuHmD+/fWSDON51doNuoMRiGO6zLVapGmKSCZm5vj3r0IyA/9LsUPfvgK0WgJ32mRRGMGwy0MORurd5m5fAGD4NJjlzl96izX3u6A0czOTHHh3FmqlQDPA9+1nYm37m5x/eYt7txfY783JFMWXTHvA3uXAawFA8yhQLZEZEuC9MPn48N7sQxWJfOz0xw/cQy/4uO6Gl86hTS/ARQIBcbhz/4RGJ0z3W7hjMZsbK6SZQnVapWlxQWqNY8nrz7J4uIiPzj2A/7wD/6A3Z3douUY5ubnCUPLVZqebiKlJIkTpqenGY3HDIeDg1UlYG1jnd/7vX/P3PRjSOkxGkek4w67m9d44nyK5w6wAlv2XBZS4HmCpu/SlC6BV8F3aoBDgkFKB98P6Pb6ZGnC4vxcwUeUbO32GcXqkMXO0TV+EPybCTpnygtygrYYRNEUVOYlpdv3w49ESYiVYGuvx53VdcZRQrMSUK9WGUchu4MhUUnUlh5G6mKtHF0t2ubZh97Hw095oddrVaan2qxvrHPv3h2m2rPU61XOnzvLhfNnufrEFS49doXf+I1/ybX3blKprpPEOa1WG2MgiiME1mRYK8sRbDZb7O537PoryO9SxHzv1X/P5XMerutTaxwnjCCJcxbnj7GwME8cD4njkN//5jfY747I8pg0zQ7U839K0HKkW/kww3zSgmzHWYhHdCw/9Bya7/J1CBzpWDSy6Fks3BAtElQQ4E1x9/6v9Xyk4EcIQa3ms7GxwtkzZ6jWaoRRQpxk+K6g3+vwkzdep15voLViefk0jiPp9a3HUaVSI9M5Wa7JshiVS2Zm5gjHY7IsxXEs1wMEnlRoPcZzfKZb84zCLrnOENKwtbtKEj9O0JgGEfDMMy8yO5Vw5YmzNGquNcPMc8LxmG63wzgcMRwPyfLMDvqRDVqw2k2pVCEfiJk59L1HD+gPM14lk/7wa8oL9oC4a2FG1/EOgh8MKPt9URzTGw7QaYonAN9FhB6be3skSpEpQ5Yrdnf3yHM1gRx54D1Oz0yztbnOsRPH+PiLzzEYjNE5BJ5HFGbcuHaDvZ19slQxNzuP63kMR0OiMKLVmqI/HJLpjCyLSJIxlUoFP/DY3NiajE1p4iukRueK2ak5almN8XgTrVPG4T5b6/eZeewphPRpT80iwirktptCaYXEBoJxFNEbDekPR3R7Azr9Edv7Xa5du8ba5iZpnoNj5QoOZzofhLz99H/4Kf8oDtC9oBrw7LNP02o2GXe2Mcpq5YRhjC1zOUdf+CGCn8PvXxzKimq1CqDZ2dnk6tVLGCNI45TQ2KBoe3OLV9OUIKjg+xXOnjlPliv6wxG+GwCCOI8x2jAeD9BaM7+wxM7ujtV+KhBXCk5brlIqfov56eOMRx2Gw1toE7O2cocr587geJJGvcVTzzzPrRvv4MqcU8vHaLcbeL5rO8QcQxAEtFpT5HlGt9cjURSq3OIQFC8pu06OjIGxsMARMOcIhP6I+T50sE+I1MJyY04cP8787Cy1Wg1HRxijyNKcOEpQKvtIkPlHeQQwNzfD2uoKp86c4eJj5xkNx6RJRhC4hOMxb7/1Dutr64yGY44fO4HjuraxJMlp1huoQjg1TUPyPLe2EbnlepS/w5ZRbMChjcfszDJ+4OF3HbbH+1TckMDcQZKgtCZTGVKC4/i4RaemF1QJ3AoeAQiXipR4vm/LiUaTZwHNLMe5chnfr/Lqj98l2tqzZHnEA4FqOYfi0HF7GNEppudw5CbMISTooJtzMrfFa7TRjMOIlbUNRqMxc+0pZqamGIdj+knMcByRqaLb6PBZWL7BQ9D+TyPMlirijhA898zTJFlmS8fKR2cx9+/eI4tiXM9namqKWr1BHKeEfowjXeI4BSxXKk0yhBDMzEyxsbk1KTdZ0rZBk4Ojac8sEHjzCFejtMNolOG4S1y6/Hl8zycMQ27c3ubO6m9gyIpy4uHwTjwiM+CBr5VNHwecR4sAl2MiJ9/DZG4/eKwO7jObJJYEd3HYHM8c3qd/SnjnT/F8xOAHnn/uKUajEd39ffb2twGnaJu2mi7bW2v0egOyVFEJaiRpSrNpTTKVMky32wjp4ri2JXpciCKVHTdG28hQG02l6jLdnrYwrB+QxHbxh+Mhvc4u0802UtU4f+IxpisdZhoOHlatJ8lyVJziSmcivqfzHCMtB0TDJBAqL7OyJRaYqLo+ampKUmWZXx4pg4mjQc7B2B2tbZaLxHGcB/6IQjFXI6WLAfY7XUye2TJLxWdmbo7t3T329jskaU6mBesb22xv71qymSMfft8Czp09xcWLJ9ja2ebunZsoZfC9akEvygnHA7a21hn0xtSqTdIkIfADKpUqQgia9QaNZgshHLS28vFbm1ukmSVYS1luGCtZPzMzQ+DXcD2HalBhlI3Is5Q7t65x8fRjBF5RAg2qhFHCYDgm8w0Vr4rjOoTjiG6nx87uPt3ugJ39Lmtb22xsbpEkKUgH20VYnomPyD4fjmTL8/dRM/vIrz48hwaJ4vTxk1y9/Di1wGFsFNJ1yI0i18oyxoTBmRRsPvzzcFnVdpx86pMvsL2zx9bGGnmucByv4MVYXZ/Vtfvs7+3jeQFBUAEDU80pBIIsU8zPL+BId6KX1O8PGAwGxTotDsGixFSrBkxPzeA6FWrVBo3aLP3RGrtb63T3u8wvLSIwPP7407Ta84y6A2baDTzfwfM9m9EZq79yanmZK5cf5+3ba2wOhlhNkUObDXNoyg4uqcnlycF4HB7Lw0HigyXewxer4zg06nXOnj7DdKtFxXMxeYZKc8bjiMFwaI0v/4RdIz/1EfDk1ctUqx5bO7vcu3MTTKnursHk9Ht7rKzcYTwMaTaaZGlKrVqjVpVgBO12G8exBrxW1TplZ2eHLDtwpJ/EGBJmpqcJggYYRaPWYlxvIUVKkqQYlWBcjVQZCEEQuLiej3A9axDquHjS+vG5rkQaFyU0jlCoPCOOExq1OkY4rG/ustPpkyeFhYQ5mNaj8yEm8yGKORPFfItivimnX1AkDzxyTgS2UpQow15/SKbth85yTZbn9MIxg9GYKLF6ZtZVvESUDtbL5IfxwNeO/C7B3Ow0H3/xObY3t1m5f4cst6beBoHWVsbl9u0bdLsDkC6Oa3Wy6vUGKtc4jk9rygr1msI+Z3t7hyRJmIQYwgb2GI92a942F6gaxiTUalNIB+6t3eXK8FlmZ5YQXpWnn/0E33v1jxiNtq3j1uGD7f2W8gOIMlDcO24xroaDYEU98IPk0fk8NGEHDSMUtAMxCeiMseR3qzJ98O/lnv2PaWlx+PmInB9Bu91gaXGW8PgiYRQSRgm7e7vkYY6QtsXNcTWeF9BoNBiPrXtzGqekWWYFlHJFmqTkyipnypLIKETBabFQdL02Tb3h4whFs1FhFLlkRpFlCTduvcfJY2epyhqtoE3jxBJVp49bdODIQqVWOI7VWDBFd0Khx2KTxyKipTTqkxPH+DIDPoh8D0hzFjLmCKJzBErkaDZ6pGZtjK39Cn2EZKd14UCsLT3Two6QGc3qVofdvS6+K5ifadOc2qe7t0e310NKjzAzXL95j+E4sqUWA+bQpVECvtWqx8njiywtztIbDshzTWe/x2AwRMjcoi6OplJzaU5VMYW2S5Yp4jhhNI5s+6TWxdfiiRiibd894No4bpPZ2SXAkGcZrnAROBiVsbe9Rn+ww/zcPEonYHxMnLHXjahXJLUAEIJub0SvO6LXG7Kz12F1fYt765tEqUIbF4yDVg4G2+lhRQ0P4PIJf+cR0cdB4neQLT0oslZ88fB9XIylVep9+vJFZuoBJo/xPUklCDAG6/d15GdgIeByTkTBZxHyyO85ciw9ECxLKZidbjEz3WY4tnX+MAzZ29u3GkVZjjA5vu9QrVWpVeuMxzFKUaAbMWkheqaUJopi8jxD63wS+NsASOLKCguzy/i+Js/HhNEIZQwIh3g85Oatm8wfO4HRmrmZRc6fv8Rrr91nnBgy/KKUpMGxUhWVisPlS5f45HaH3vgHbHZDUmHRH1WidkJP+Gx2PylM0fF3MAxiMpwHmejhoKdQBz4ENEjAFYLj8wucWlqk6dtW/xxppfyHodXYSfMJ+f2DctKDO/NwZv3+h3c5j41qwPLyEsePL9LvD1G5Ymd31yqLo1C5xpOCWjWg2WwSJylpbDVrkiRlHIYg7LkYRTFZllkV3ZKnJKx/mjFQqUwzPVtHmR5Zahj0N4mTPuubEf2z55hq+Oisj3Dtp1VxhnQMlbqD77pFl5mLdB2Maw+6uu+gqxXiyCADi/DOtNpcPH0a16uysbXL9l6HKMmLkubRYFRrfYDEPYSCHtLrKubTfj+P3Lvlo7RVgB+MQ6QQJKnVtBrFCVGSkKYZShVk3GKaTDGJD16673deIwS+Kzm+MM3iXJvheEySJPT7PbqdLipNUFqBMPgVl0qtCdIlChOMliiVEsZjsqLzVClFFEZWrqIsAUmwHYkCKSrMTM8DmjTpECYdongfZSJGYcT9jTu0Z5cQbsDZc1c4eeIxrl3fB7LJ+y6a1Y+uwwfWbxnI2BKVxJVuYcdkaRMGc+R+Kl5NeV8e/LeYU3lQ2JeOMyk+yEIT6RA2W3SGF2dtmaVMXv3w82BQ+n56QA9+z08Lqj6yzk+l4lCtevgVl5n5NsbA8ukThOGYOI7pdrvEUcr+fo8sS4mTkCTKrWWF1niBD1CIfYHrutaZXZfBhOUCNBozvPixn8PonI2t6yTJAInBFN5Fm90tOsMOJ2YCwBC44EqDNCCQONKzZo0FlG+EmIg9YbBdA1ojhFMgFgeQnW0fPTRdk7/rAzj3EDI0KZmiD7WxH56IIigXVv3XdS3hq7RbKK0UkiSxisqT36sLzorGMSmBaw1lsyQhHPZJM0WSKta3O9y6u2rJfQVsfJDSlAe1wPcktbqH1i61Rg3P81g+tUwURgyGfaIoZH9/j3AcMxiGpHHGaByTxDlZljMOY0tuNBQdUWXZoszA7SUtpc+TVz/L4rHTbKzeoN/bI0kGVuhOZ6RJxq2VW8wdm0HHmjBzkLkh0ylp7lpOiDZs73bZ2tlnt9NjfWuXu6vr7PYGKMfBCBeURJuyPdkUE2HLpocP0Q96ykDX/oSjAezhvwksZdIU+3ZmqsnFM6cQWYpRGYEjGQKD4YAsyzn62Dk8IuT+Acjig48xFlWrVi3SE1SmcN1ZlIY0O81oNCKKYnZ3d0mTlN29DrlKiaMxaWJ1N6IoIcmKll9TCLDpgu8my4vHlr+OHTvFc898ikF/j92dDqPxgDQb2hESklvr97mSRbRqNby8wosf+wRvv/M9OsNx4e6scYTBExrj2IxvamqKF59/lsFoxEuvvMHOMCel7LC0gStFMCNEOXdQ6pw8iv9hx6X8e0FWn4yyLIJMqzW0fPw4080GgQCjFXmWMR5F7HU79EYjolyTw0+hSxxGJx7uBH3kK4p5DgKHWtWnCkw16jiuw8nl4yRJzGg4oj+wKNxgMCKOrT9SGGaksSJOE8I4tJ1oxd6z3aJWOsOiKLZVv1Zp8MLHPk+9XmVt5V27j9MBvokJgWt3+1y6ME1F9DGuQUuDozK0SUkSjedWqfnOJDsvCh94DgSOxLgujnSQjqBZr7E4P8P03AJPXoX1rV2GUYoWzsSqRCmbJHU6nYlre1n2V3lGXpx9opQpECAKZLL8vhLxe/Ay08aQFV59gxHEUVSU86zWT5ZnhbTX0RJQaZnxcHn5YC0dXmTSgWpVYIxLpTqN67mofJE0SxkOh4Rhyu7OLpky7Ox3ieKIMIrIE4iShDiJyI21FjJFklsGfJPqriOQeJw5dYnHHr/C9voanc4+aTrAkKJMgkZz5/5dLl95Ec+rUavP8NQTn+D27dcLz8IiSS/riI9cnofQVFMKidr51nlOWX62q1s+mpNTJIETc+NifqQ40HyyWmQHe8CWMm1hz6CK/+rJ3fRnzbX7MIjSRyt7AbVanWazYRWSjfUtcR2XwPfRWjM7M8t4HHLseM69uyt4ns/66hZClqWeCc5oGWcAhWqn1gKtXVqtWS5cfJI4dOl0VhiNe3iOg+OBL13qlSbT7bYVk9IJSRYiSDEeHF3nNpgRUkyyykmkOhkkjdbyyNfs2yuz0KMdWkdf/0AG8wFZymGYr/wzHA5xXffIJJUBkTFm4jMFBsfk1KsBzXqd7u4uKovJMs1glLLbHZBm6uDgnhTUi4VHeQBXaTZbgNWg0NrgFMhbpeJjjKI91QQk9+8V5ctklzzL0UoQVHwcZcXwlDJoZWxwiTMJggK/yYXzzzDTPsvq6ip7e9uoPEHiIqVLxTc0W9ME1RraOKS5R3+QIE1IkOZEScYwijFas9XtstXtsbKxzf31DXb6AxJjRSBNuWkmH7nghpgDRE08AK8+an4/DOR6sHIKCFfAU1cuc2xhDkdoXGnwXRetNMPh6GHkZ/IrzJH3/EHPg+/XkQ7NRsvq9hT7TmmDmzgEnkfeUsxOTzMOQ+YXFrh/fxWJZHe7i+tK/MADxykyYevpprRFPG3yJRCO4djiec6eeZbd3Q6d/ZBxOLLt5FIipEuj3mBpaRkpXNJME48TgoqP6zisb2yxurbBUu0Eri/JS/FH4eBIwcLsNJ/++MfY2N6n/84dexEWzs+P2jxHduz7XlQHQ2rn2r7SlllspNqo15mbnyuQuYwsy4iimP3+gL3ugHGcFqJu/6Hgd0GtWmdqagohpBUE1RrHyQk8l2qlwtzsDIPhEG3g5s3bBEGFjWQb5YDrSqqVgCy3c2eDVqsSLYRDyaeoV+d4/PFn8dw691fu0usOyFXhaCU8hOswTiWRqpOZOtpAqg1OnlgSbqpxvRH1WgvPkwhjneBNseeCoILn+mgE4zinHqW0Gg0y4eAFVaZnZ0i0FRu0QZrVqYnjZGI4G0URaZKijSaOI8ajMXEUTS7LXCl6gz6j0chSFUo/vkNGpyV6UyJ/KlckJKRYsUplDMrYIMcIMbnrJ2fBZFbKNfTwRXmYOO97Ho16E+l6gINSObl2cVMH3/NptxXtdpNMGepbO6xvbIIWdNMhjmPwfInUkGHQwqIiSBuwgoNGIRyP06eusHz8CTY2t+n1YpI0QakYhEE6LtONKWanjpFFgjzOGA728XyB4wryvLyNxATl+nCPObK3Dpp8JjWRI+NxgC4dRVbk4deawq9Ml6i5FUI24mDODv/+MgjDPOIM+BPtSfNBQNLk+WjdXsCon9CemrGs9UIPper51pAwVyRJikSi1ICLF89w+/Y9opkGUZQShckBSgBFIVCALF2vBY3WNL/8538Vz5vl1R+/i/Qca/sgJe3pGRZPnqI9M4fOFGEYc2f/DipcY3F2i4snbCdESXuXBY/IddyCfX7og0zG+YNH6DDJ67B4YQk3T0pihy/Yh35kQaWWTIIaYwxhGD6ETBwOjiz0exB0RVnGndUNHJ0hjSLNFGGkSBVFAKknkz75qNr+P8YYKzWQQqNVw/d9sjzDCKwPTJ4TxxFOe4rhYMTy8jGqVZ9Br4cjpFWFdmxXmbUc0GhpMPqgNCFFwM989i/w4gtf5vuvvEVP9XE963QeeBVOnlzmxIlFgqBJlEru3Nlnb22F69e/i+91efzCRZr1GkkUIQx0+j1WN7dZ2dxmu9MjLIItwWG05/C4HcyrKMpZpT5FKZb3IA/h/VRDzZH1YY5s9lazyfPPPk271cA3KRhDXq3gOA6BXym6GA85ST942pZf+xD7uiwFZJliNEyYm6vj+QFCgNKKJAjIsoQkiUkdg+fVMSgef/ws1967RZbWiaIMMw5tl6MAco1xjPXxwaEkpZ47e4W/9Ev/JXu7Y3785jWEY3M1P/CZn1vg9OmzzM3MM+qn7Kz16Q92uXv7Je7f+RFJPCatVbi7ssrZ2WmcqSpOTeD51m3bly61oMKZ5WU+/cmPc39zj7WdHqXlgP2sdpBKwQSbXdoukYlJ7fschqXFhpSSiUiisF1eS0tLzM7M4rgOOkmIkpQwSRmEGbv9iFGirPP1ER7Sn81TrqPRMMEoSa1RtzYsxYUeJzFZlhDHETPTTXr9IRcvnmV1dZ1+r0elWqHXG4Is7DqUwRhhm0MoAzyoVqb5C7/4n3Hq5JO89N2XMcaWyf7/tP1nn2RJduYH/s2ucu2hVUakrMxKUVq2qtYSg4YeRWA4i92d5Yt5O9+EO1ySS3KHAEEAAw4GupuNRusu2aV1ahVauvYrzGxfmN3rHpFZ3aje2furrBDu4X7dxLFznvOc5whP0Kg1ObW8zKnjKwgl6A0Vw0GFZHADGa9RkYA2REFMnFZoNCCKXIsDbZuTgofveU5XyEpeVEsDmrUKB70eHim1ckSJACWkQ9YlhgBVLVmn29m0LM3IVEaWpAz6A4bDIYCr9LRpvX6vbxvyZhntTofd/T1XmDJCc7VWGGVtqVaK4WBAmtkWFBLj9uC9Ts1RFGncdt9vfQ2GGcNYM12t4vk+aZYiPcUgGZCmGfEgBhTDNGNqqk65FPDhh1eBMu2WQQwzMmPbC1knwPJhMD7gI4TPo49+gq9/9Xe5cuU2V65dRwQKoTPKQYmpySlWjp+gWp2h1/FZXd2k1V7l3fd+xPXrLyClpl6v4ktJlmbE6YB0jMBfaPQcjvuLK28hc2+qaITuFPIsxWsd7lSQc34saTpvaspI4PDnOiMO/R173/zJH5mO/EddP38zfyznR2vNn/zxX/LMM4/x2JOPMzU5ge9LSuXQEouVRuLh+T5RKWRnd5fTp48TBD53bm/geT7xMLavZQQih3EVaGVcJ/iAKKpRrUwThhEKw9LiQyzOLxCEEe1un35rSKe9z9bOXXa2btGMhnzqsVmgQUFmBoS0RiJ3ngqY2oaShb7P/Qb16Oa4lxA3SpGY/FD5iAMtb8OAQw7y3LfW9yIS96IUoxfOlGFtcwcP45qAgMZDjx0gRz5F8ZoY+PEPXyTtd3j2U8+yvHyMSjWiUgoIpGA4HBB4kv4AopkpWgcHmMkGFy+d4/0PrqCoMIw1WsfW8cm5PtjWGCAIozI6KxMFUywtrnDQ6TN1/CQLcwtMNCdt1Dcc0mrtcuPOLa7fuMza6uugNqhWYXVzk+nJKaIgoFGrcdBqcWt9nc39A/qZRmGRCm3u/bR244KtFhx9/tx3tXv28AYvGqUWr3EYAcxTlWLUDxohBI1Gg+WVZRqNBoGOyVLLa5uemubkyRNcvr1NL+0fhiU+5nWUELi1uc0f/oc/4xOfepqLFy/SnGgQhD71WsigL4gCj/7ARs5BMMXW1jYXzj/A5as32FjfoS4rZKqH9AQJqUM8sc0PjSQMI7I4wKPB/NwM1coq5bLH2bMXmZ9fwBjotHvs73ZZX1/lg+vvc+3mzxj27uCZvhV9lB53Vte5PjlD6fSSbTkT+oSBRX4C1/Pt0rnTXDyzwv5ui4FRuQQh1kn1nMEdRZj2P/nzB6yY6zH43EAQeBw7tsTU9BRSSNvoMknp9Qbstfts7XfoJQolPIuk/FKz9fPm0d7If/5Pf8fqnbs8+4lnWJhfoFT2iSIPz5OkicSTthx6ZmqCnd09Vo4t4HmSq1dvUa+XMV2DNpkNoLSyDreyqEcQRkhRQqclKuUp5meXidNV5ueOM79wjFqtRr/V4aAV0+/0uXn7Nu9ffZN4sMrijKReCvCAWhSw0u7TmJ+nUi8hhhlG2iozJQ1om74QUuJJyw8KfUkgwROWLygkeGDRYZRFjTzbcR0s5yW13enwwpAwCKhWK26sXEo2sykzG1BnxHHMUr9/uEO8O5B1ZteyUordnR1a7TYYRj3bMkXsnK00Te+LLvyi6/33rvBH/9t/4nOf/QxnTp+i1qzi+5Jmyafb7eJ7EkNGEHkYFJiMCxfP8sEHV0jTBN8v0en0CX1BmhqkL1FKkGQWqYrKVYwqU4nmWFqIuHl7l2otZHFumZnJeeIkodsdsLejubP6ITduX+XO6pv0encISKlWqzTqNerVKtVKhf6wy+r6Kru7u/ecL+MHVH5c+b6P73sfcfbY50sp7/Mah8/I3J6O+F0ukBkXcrrfVaBB4pcMPn65iOVjc366vZSXX3mbq9dWmZmZYXKyzsTkBI16jYmpBuVSROgFBMDkhGD/YJ/5hQWM9tne2iWJLQlNCN9Vd9moVmtNuVKiVIrY2LzLE4+f5RPPPoUfBYRhxOqdu9y5dZWt3S067V12dlaJ0y5BoJgo160Loq141P2G4yON2lgWzn496nGOozr3c5vH4EZvXFwvf7649/wzY0jFP+oaS4uN/VGheCKOMiJEsfRGHxCS1HD12iqb299henqG2blpmpNVGo06E5N1JqZq+GEZtKBSFSQpVCtw5vRpNjf32dk9wCAZDlJ8LyRJUrrdIcM4QXoBnpdy/cb7fOHzv8Klh85y4tQK1WqVTrfLtSvXuHPnOrduf8jtO9fY3t9ECkOlrBF+SJIlbO4csL1jtZwatSoaw+5Bh1gptCfAeBbuP5JmzFGeEeRlRr87MvZHeUCj9NfY2JlxG2mbzOaRDMIw0ZygXm8gfB9fCIxRRGXN4lKZ050hJ29vs/POB/dZLqPNbXKbII7OXH4PY783FnvaPxjwwx++zFtvX2V+fo7mRM3O3USdmbkGUVQGoTBCU6tP0TrY5/jyMQIvZHNnj0xDPFQEXkjqK9uDrNcG4WOMZG9/k82tW1y69BTPPfccUWRRilt3bnPnzi2u37zM6p2rrK/fINEDvEgTBBJSC+Uf7HcYdDsEsaYc+fileaIyyMDDl4IwAF8L5uo1vvypp+ketHjzyl2rTWUExtjmuHYQXGpzBLyPVvP9eAiOI2QfNsW8T9brLC8uUC1FCCy3RGcZnU6bnZ1dq1au85HPA43RWhmflxFC9dEu0kdFqkkK7757nTt3t5mZnmV2bopGs0az2WRquk5zskwY2ZRYvTFFu9ViamKSk8cVWzv7aMAPlJ0/KRgOErrdDmmaUTYSjx5Xr7/D4088y2OPPcyDFy9SqdTZ3dvjxo0brN+5zo2bl1ldvUq328J4miiAm+sa39N4QlD2fW5tbdCYbTDZeIxKKG0LFaHQ7gATCITn4YUhxjikzbO2L1fGNrgYpOjJJmyzTBdMIFxpNZbr5XkBeTGAcSnZe+ZBilGjzbEAJg9MlNbU6/UCLVJKkWYZ/f6A/XabbrdLp9NB5YvEBSa/iEwrECgNaxstvvXtHzI9+TYzc9NMTFVpTtVpNGrMzE0QlWukiaZWLqNSD6PanD5+nEqwxd5+G89IhsMUFXkM44x4MGDQSxDCI/B81u5ep9Na5+Txc1TLX6daK6PSkOuXb7O6vsH1229ye/UN1nduWOfREwS+QSpBmqRsb++wv7tL6Af4kc9wEDuEfIR9HUobukWdj2VO7ygyDibfbVbvJ/97U6Bv9w/aDxHd81nMfR+Tz9tRNG587xQW8PDGOuS0mUOP38/MjjtuH3V9/K7uwgMZoIxPt5fR7u7xwZUtarUac7MzlKtlhIBWa48PL7/NsWMzDAdDqpU6vh+gDNy+vUa9MUO1Zvknw8RWgWnPY2gSLt+8zEOPPkOpLGh39tjYaPPGW29y7fKHdDvbhIHC9wylIMBDgfbpD7oM05haZFNoRlC0YCgGJB/4Mb5HjsIIIQuSH4ynR3JdEbdshKuM0flGxG5c494kl+M3uJw8o5/zrWo0QucQrOGw63K0cWNxrI8et/GFmw+APMVSrLKxw3yUz9ZCoISPkRFxJtne63PjzhZCeMzNzVKvVymXSwz7Me+99y6VKhjTo14rgZREkc/Nm3fQyqfRnKZcLqG0R3+Y4ns+Rip223e5vf4+J09cIElb7N29xbVr13jllVe5eu1dknSPIJCUS75dwkojDGhhK/PCMKRUKhEP+vQHrgw75+8Uzg2Fto90VXF5hC1k3tOJ/H8cXQLjBPeRcyrIMgcV58sEMWLIu7e2kaxnCcMGCAK059sqOCOIylWmZ2bx/askh4jPR5ALA0boe7anQRSGuTjoDYCH8QKkXwJCOp2EvYNtev27TE1PMTHRoNG0JdJbm1usb9xgZraMyvrUGw1KkcdGt8PWVotGc4YwKlOtRvTaCdLzCL0AnfX58MPXePD8RZCKnf07bG1t8tprP+PNt16n29nA91OCCEIMaImHsBL3ePh+iagUcmunx9/88A3+SfQsXlBiWhpqkcETGk9AJfS4cOY0+htfI+WHvH3lBsM0xRhhUQ1wXI08BeYmz9zPabXjlZNYhbHOj8AqpZ86Ns/K/BQl3yDTjDhL6HY63Ll9l2s3bjKMU8BziNF9yPHmyA9urdyvLPqeP83tjwHjeQg/RIiIwVCzvtnh8rUtolKZ2ZlpavUKYRTQ7/Z4593XmF9oMBjsM9Go43uWybGxtobnVanXJ6nUQpLU0On28PwQKVPurr7Hfus2pcoMw7jN1vZN3n//PV555WXW1q6jdJ9KWRKUNZkSZNr2sdOZrTQiEPiB5vrtOzz8wEnmJ+sYk5F3BM5rIY0UmCQmURotBAmGMAzQnkcm7PPyti5FtaUL9rSxaobSFzYl7/ab0JatoLF92KRD7X3fL5wflROgxfj4uhS4FASlMng+MrVVxyZJiICqTtEmI0kGKJ1YTp45oi7urlFglPPhDAiJxgO/TGICdvYHrG51yNQm8wuzNBoHVKtlsiTh2rUrDIctyqEhCoStvAxDNjvbHLSGVOvTRFEDKar0B9uUSmUQgl5/lytX32Bm+hjCpGxu3mF19S6vvPwqH1x+m25/nSBQRH5AhATl+tW5wKwcRjQaNQaDPv1e33VLkE68F2f4xs809ytfggSlc1uVV+7m8+YCbGMd0zxb8VGFJEd/b4NV+7p2mnxUphnpCOVzWXx374uKo9/kp929QfDo+sX782M7PwiJkCGeV8JgD7BBPEDTZ3rWAxHS7Q6Ihz7x0EK63c6QNIEwKrlFJ9nZOWB1bdd2bg98wkqJfpLieT7tbsJ//pv/SLM+wY1bH7C2tkqvn1Eth5TKgMrwhEagQGlU6qFUSpJlIyTkiONXFOgJC8NKRFFeLgQ2PVboE4wpW+ZlaI44rO9nIMccmEMyU+Pvb8N8t5lsLjVvTGlceW7hQDFm2MGtjPFaoVGfmjH/+tD9FDcwDiAIm1YQXgnpl9FGooxHp91hYmoa6ZdIMkm7Y0jikMC347i/f0C1VgVjW2ykieHmzdtOld0a0UGmEP02nf6AP/uL/51zZy6xuXGX6zffY3NzC2Mk5SiiEtgWHCpNkcKz0ZwwRJUKzYkJ5mZmqdfrpMMeB61t1tfvMtzdcR3MpSXWGdDCEupEEU3aPkHSc7wsk1ctcEj1OY9e8rSSne+xQToaDYrRrOYVC6urq6yvb7DQPIX0A2QQMUx7XLt1hzvr2wwGg0NOzUcjBffboK5iybgeU2bUBgApQQYIv4QWAUZKuoM2YT9mcjrCENLpxihVYjiQpIlPt9cFDNIrA1YCYnt7j8EgwfdDVKJBSvqDPvvtfbI3X6CXZBgZcPX629y8dYV+f0ApLFGu+BgtyNIM4cZbGEEQRkxMNJmamqbZbCKFoNdu89o7HyKF4uwpiT9RoeRZYxgGPs1amYfPncELK1S++0Pe+uBDOoOhLak32nXP9sd2my6M8KHIP09lGlM4Pfm0laKIk8eXmZqs4wlDliZ0O13W1za5dXOddjcGYytCbcGZ4BcrzhoXDH2ELow4sneLByRIHxmUkEEJI3xSPWTQ7jI1M4/0K8SxYTDwiIcBaRIwHGYcmAMq1bq1Fwri4ZC9DcDx1QAAoj1JREFUvbvuEPJcuXebA5PRHST80Z/+LyyvPMjN25e5du0dtne28LyAclQiEJ7VoHK8GGOsHle9XqVarTM5MUOzWUWGgoN2h0rku3BNI4QVAtBY5wffs1Vdwoz9bCkHyj1HFgUtFD29pDF4vgA8PDPShhFKWK0l5TSgOGzZhPaQrteUNtr5U4fTYB44uRCN0BrpefiBT6kUEsce0rN2+BAifnR2x9ClQxW/CIQXIgPrYJksod1t0xhmNJoR2oS02jEqq5AlPYwPrdaBdcJ0QDxMiWPNXmsThQfG2v84s33ZPCn5++99i43NAwaDPtduvsGNm9dIEkU5iihFVv7EtsbQeELaFKPnMTHRZHJyika9QaZSer0eG5trbG1toTOF0XZMbYxunRjhUJ8g8EHYMRUi50YeRnHysbZke334fCwQuI9e/8YcFvvN1FH9oHy2x76/B4E7ch0GaYu5O8pZ+nnXx3d+EAVMHMcpcarY2+swN1cmSTSdTp94mHBw0KNWm6XbyfD9KlOTs5TLFer1GX7nt3+PemOal156levXb7CxtU5n0ENgIbyB7PGzV39CPBgQhJJmY4ZKyWompFoTOFjU9rHSJInt4D0YDkmzCn5epik9pPQo1nru/TiIVUiJ5yDYvAHm0RJLoa0xNg4l0g5zsWWAeXRzGCkaD1bHUSbhussYoZFIPMyhnig/Z8jHHv8Y3u3RM9xYwy2EIU0ShlrTbveI4wzw6fZsldXefgfpRyij0FmZyeY0i4sLxLHiiSc+y4PnHuaDy1d54423uHt3jc2dXVKVkaRW92d17Qbvvv0aWqeUShFB4KG1IcmGCKzjJ4TEc2nCWrnG3LFFmo0mQRgyGA7pdru0Oh0GcQzCalF40gMEwvUF0lhNp3Gy3iGNJpFr8tjS238Mo2Pk9I5DsO7/wpLoB/0BOzs7CO8sfhgRJwm7rS7vf3iVqzfucPnWXatp9XPfb2S073+J0bp1B61WVgVba0W/3yfNFJ1On6mpGYbDlDRt0+70ODhoU6pM0G4PCMNpJiYWiMoVpmcf4MknP0kca154/iXurq5x9/Yq3X7PilZmGf1Bh+989y8ZJrFVag58yuUQrTMGwwRPeHi+xPcDpJAEBCyvHGNqcpIwCq3OSqfD7t4Wt29v0evsUa6UicQkU7UyURCSYRCepF4v8dilMzQmGpz42QpvvvsBd+6u0RsMSXWGFrYU3nCPLSzGzcpV2HYwrlMBBoXnSxYWZlheWSIMA9I0YZCkbO7uc2t1g91Wj4LjYywHpWh78wsXyc976LBjXfxeZWiVIQSWizJMaLe6RCUbEHY7PYZxwsF+m6jcoNvLEDSolOvMzc1Tb8R85Wu/xeLCCd54420++PAyt27dYWfPEoHjeECiEt557zWef/GHGAylckRUCsEY0mwIJhdVdfYOQb0a2RRqcwLfC0nTmJ3dHhu7O4SR7fwlUDbsE9odjoJSpUpUqmCwrQykc3zGnU+bjh9xK8HYkm4hrS0CCvVBKfA8A5lAZ+CTI/COyqCtM6W1RhVO09jh7HgmUktXBSyRyioNB4FFlH8RYfZ+pGfjbGaeC9dKEWeKTmdAtzME49PrDOl1B7RbXYaxRnpVev0+ldIsMzPzGAQnTj7C4098gq29Fj994SVWV9fY2NxkMByi3N7bOdjiL/7mD8mymHI5InT9wLRSqCxDIJHSEIQeUhiCIGBhcY7GRANP+qSZFew8ODig1+uSZikekiC0oovK2AJzX0qCIDjU9FkpNcoQ3CeFVZyZzsbmW2A0tT8vEKCoqDb6XjmYfxSKypGTz9xrP+/Zd7/gdT+2wnOtWgad0eu2KJfrhEGJcrlKnKRsbe/YvlOlElMzM9TTBoIMT9jccJoKAt8njjPmojInj59kfnYBLTS1iTpTUzNsbmzz7jsfcOPGTWrVMlmaEgY14qFiOOyisyEms1Vjxmikb6uv2u0Og8HA6ug4Z6ZWq1GLUyqVCtVqlTDokGmHoniSwJWZF7lrRjycAq4FRK4KbbTlE5Dra+SwnXbebc7C0cWA2RJA6Q5naR8RIxKtUfrQQvove43BioDvCTApw34bD4EfliiXKxg8DlodkkwRRRFTs5NMTDVJ0yFSJ/iepN/3kcJHZ7aa5tj8MfzHQp59JkRhWFxaYm9/n9W7a7z4wssszsyRJElhdPrOYej2uiCgFJVI0iFZltHvd9k62KNULlGv10mShG6nhU5jlE4Q0iew7e7BQFaUUdqKFyGkPfgsPMS4WIvBRYrCQfuM0IKjxk65yLQwzEXSJSdT25dWWjNIEqJqlahW4aDdY217j1ffeo/1jW26cVrM88+98hTbod+5L6LAm8BYiQjfF2TZkE57j2q1aQ+hcpluf4DY26MURUSlMnNLc2RZgjQpHhqjQ4YDHz8MaHeGTDSnOHvuPGfPnSfThlqzQblcZn19nddff5u7t+8inUEMQ580Szg4aLG3s0uSJlSCClob4mRIN+2y/+4+USliZnoGYwwHB/vEgy6YmMGggycFyTOPc+70cZp1ie9ZBC8MLNHyzOkTLK2c4hPPrPPiz17l1Vff4NbdNTqZscUKQhQZ63FjV0Sgbq8KKSxfRGjqzRJPP/swi0tzaJ0RJzG77TZXbt/m+t1VhpmNPqXTGzEFx+gXXL9ok2qDkaM1lZuRaq2MlJp+r0W5pJBBmahcQgjJzt4e5XKJKIqYXZhhYqaBUTFCK3zPY9AP0Pj0egqlBUvLx6k3J3n62U9ipGR5ZYX19XWuX7vJq6++zjGlSeKEqBRhjKLf77GzvUO32yeMQoIgIkmGqEwx6B2wu7VBrVa3xOh+D532maqXiaohnrDJelAFt9AIqGWKmSCyDodDY20Bhl3S+Z7L1/g4/UB6jrGhxw8xbJAjJEIaTKotkms8pND42kqhKIXtEu6CA23yyi8waPscT+BpgfLApMqeE/LwdjQfEXEWwJ9D+w02U+B5EMd9As8niCpOCDJgZ2uPpBFTqZRpTkxQqdVI0xgpNJ70SEVk01N+jUGqaTQbXLxwnouXLqIQLCwtMRzGbGxs8rNXXmNve5cszVzxj0eSDtnf27MVf1pRDkpojSVBd3rs7e/hBx7N5gRJkljFdqXRRuP7tmWSJyWZUghtESbf9/EcgVk4zkCue2c/+r2prUN+xNhAio9weo5W0tpKZ3vm2RYfEmMO92H8//W6B/n5Bdv5Y/f2eubZJxj0++ztHtDrxXh+wKnTK0SlEmmSsb29zfr6Bnt7+w7+N9b5QbqcbUapVKJWbZJlmlq9zskzp3jgwQdYmF/i6aef4eKFR7hy5QrXrl7lzTfeoNOOWVw4xsRElYP9bZKBolIKqder1GsVKiWo1X2SOCFJUjzbrY5SqcT09DRLS4vMrR+wvt8l6fYxRtgI1vPvmeB87HJ2u3CbMn/MK8bCK8YkP0h1zuNxqRjPIU/SIRfGdag22oBQKKms1JGWNqrPN/X/Hy4BnDixzOxMk8FgiNYxBo/pmQmWKzUEkla7zc2bN9ne2qHb7aGylNAp/2plnbog8FyzPknghSytLHPm3FkazQnOPnCORx5+nHNnz3P5w8s8/9PnuXv3LlNTUywsLpJlGb1BlzTNGOi+jQLcRsuGisGwT6fTIie0+VI4oUo7xn4QOHn4ITlfSjrH0gI9xqYlTQ6bO8fH2MaGmhH6c7S/2qENOxbx5I1CikO2eF2oNSfZ2t7k6u1VXnnjHW5ubDOMU5ceEIWBLibgY1021skdoHq9xlNPP8ru7h6ddo8k6xOWKpw+fZxSuUyv22djc4PNzU1a7TZxHLsqHINW2FJbICp9i1Kpglaa6ekZzpx9gAcvnGdhYZGTJ8/w4LlLfPjhh7z52pu8+eabGKM4eeoEpVKJXqdLL+0W7WiM0Wgn3DYcDum028UYep7A8wMyI3nnw1u09zt86tnHefTiWWanJ6y+lTaUQo8oCKlUSkw2z7E4P8vy4gLf/vvv8fa1VZTLfRhxWG7AIguiAEWFFAS+bQ/TnGjw5JMP89Cli5RLEb2DA7rdPqvrG9y8s0Z/kFiFjULCLw9Zfv4k/WOm8F6RRHvPFy+eo1qN2N3ZZzBIAI/l5XnK5RppmrK3d8C1a1fZ3tmm2+8hMQRSgoZU2XXt+R7Vag0MlMoVjp84ybmLDzK/uMgjjz7Go48+wYULl/jgvQ94/ic/YW11lZWVZY4dO0Y8jBkMYivumKli7oTJXAVcTKu1b/WHhObGnTtMzUwS+ILAt8FaplMMxpZ7p4pKpWoP1XGl8iJlb3/SY9Im49xGS5zOAxC7xoUWFuERwqJNIk9zmkKpWUpp+5y5PerhFQd1/tX3faej5N2TvhqbqdFkibFfwaG0mADmZqe5dOkc3W6fwSCl12tRLk9w9twZwiCg22lz69Zttne2OWi3iZOYwJeui4AEo/F8QaVSQTrezdzCEqceOEe10eDkydOcv3CJs2fP8/477/HKSy9z48YNyuWIleMrCAS93pA0Tun3+8671CidonRGnOBsunaprIDQD8mFCu18ONkXF/BrJ6Brg4scrRw5Prm9M8W4HB7DYpk7e3nIIXJBfx4xCqyMhNYg0LaX4JEA9BdeZpxacu/9HH7qqJ3Kz7t+CYVnyfTMHCvHF1CZIDPw5lvv8uprV+l2h3Q6XSedb9NDvrSicMJY1rx2AxV4exhHuHv73bcJSgEzM7M8/PBjfOYzn+fhhx7i7NkHWF5e5nvf/wG3716nVIoohR6VSom5mSYLi3OUo4ByBBXfRnDtXozWtmTeSI9SVGai0WRmeorp6QMGqSJNFeBZD3mMYDnen6S4hHAekAGjCmKlTUVADgUKIfB8K/xoOxTbNI0QVmBR2oSzdX6c1oMNET08o8nSxKmV3lv+Tv5+/8g5Gq3FvPrNHaCNKmfOHHc6Q9BoTnH52k1e/dmLtA7adLt9er0+SWKl1z0p8CRIYw2PclHyzv6BRbo0vH/lQ77/o+9TrzdYWTnJpz75GT79mc/w1a98lXMPnuc73/kOP3vlFQ7abXzfp1ap4AcBQWDLROPYSvX7bpyFUPieHTubr7ZcA6EF5XqNbrePGTN+GreJpSVQumQII2kBG10I54gYkSNGFCKIFskXeGKUGMuRvwL5wYCyKdFKGHH+/Hn2Dlp874c/5eq167z8xtsM4tQxJCzCV6RVxngk92xac/SHfIPnd2LXjfQkzWaNWq1MlmnCsEScKF559U02N3cY9GM63S69/sAaGWlLkMnVdJ2wZZ6mUFpx6/ZtXnvjNaJSyPz8Eo898RSf/tRnePaZZ3no0sOcOnOaf/jud7l27QZBEFAql8EYJqem6Pd69Ad90iRGZQbp5U6PbRFjR18Tp4Z4MKTTvs1uq0O70+UTTz3G/NysDQi0RAqJFArh+czPTvDs048RlSP49vd57+ot+sPEEswZoajGoQ05lB4FHuVAUqlEPPbQRZ59/DEapZB0GNPvx+wftLi7tsHufo9Ee2gpEZ5EFJpd93dt7hPXfsQjR38eoYwAQSSZmm4wNTVJkmZUKg1u3lrlxRdfpdsd0OsO6Hb7JKnV3go8aTunW2kfh04Z9vb23CFv+ODDD/mH7/8DE1NTnDnzIJ/73Od48smnOH/2Qc6dPcu3v/1tPvzwAzY2t5ACyuXQOk8Cet0OcZygM4WQXtGMMpABwmg2tnd57+o1yqWIiYkG1UrJodUK39NI+uzutTCAkgKprbWxbbZkgfoU++u+o5uPj3N+hAApHHJmgLxRa676bdNePiOZEG1GTs84YuH7fqGmHwQhnpeM0It8m+XI67jHKvKHtQt8BJVKmQfOnCBTxjl9DdbXd3j11bfY2tql3+vTH9iqV+UEQX1fojO3tiwLH7G3S15Ac+vOHV565RUqf/VXzC8u8tRTz/LcZz7L5z7/OS6cv8CPfvhDfvr8T/jww8sEQUgURYR+QLVaZdDrMuj30WkGrvrVYEnnnmspk6uAG2PR/HGh3vGSdG0MQmoEXrFWD40Rbh65N/V0z5Zw348LHubzn9Mt8uKgXxRI3MvfOfzYvS8wSoMV9aGHnPJ7r4/t/GiTAKGtMPAEJlUsLk7T7XWcrsEQjEI6gpytunIs8bxvlQGtE7z8eyAeZKzdXWV9bZOf/OinPP3MM/yLf/kvefZTzzK7MMe3/u5bfPDBe9RKIc1qGYNGqZQ0M0ig6kWUSjUySiTKx0gPrQzDNEEaTbVS4tjyMQZJyvb2Plk6WgBgD4tDjWdzzk8xmWCPJIcimKzYPEJ4hfEHD6NFMQFSCKT0ncdt2wpkjtBp3KFmy0B9lBndzz/KI/7IFZSXZY+5TEJgdAbYf8YYDvZ3ECajXiuxt7NDEg/AWBg7d+yUMi76Fmh3eCap4z3liFdmaLX26LQ7fPDeB3zve//Ab/3OP+W5557jX/3rf8X84jx/+7d/y+7OFlqlRFFErTZDtTbL3bW7SCMIvchGDJ51Fo1SpPEAo1TBxRh0OlYqIRulCpVxdW+KIh9dSPNLqy+jlK3+oGjH4SM9386rS5HKsTk/PLTWAEqMRRc8weOPPMylSw/z13/9F/zg+z9gbWOL/XbXaS4VXWsQmEJ2aDwRN/r2PhMo8o1va9kwEk9Y0cQ0jZ1R0/T7CUmqmZ2dIEmGtFv7FhFzLVsEDonUprBjyqV8LWkyfzvNcJBy5/Yt1tc3ef6nL/CFL3yB3/zN3+Lr3/g6J04e5z/+x//IlctXSOM+AkOWxczOTXFw4LGzM8Tz3Ri6sfcMtmVLpkhUZg8j6bG60+G7P3qJVmfAF577NCeW5ikF0kWgmtAH3wgW5qf4RPVJqs0JXn3zXV5/822uXb/JME1B+AjjUXTINAZQ1CtlJqsljq8s8sxjD7E8N0Mc9xnEMf3+gLX1De5ubNBPQFGxAp2AkBqUKiD5nxdRHt5h49f9qsRcBanwEQiUych0CsYWZXR7B5TKAadOrnD12g32dndRKnXRunXktXCHugYjrPOTk/Nz86B0xvbmJnu7+7z99rucP3+e/+pf/nMeeexRlo8v89d//dd873v/QK/dRusE34OZmRnq1RJ37t4BXxZisJ7n4wlBliRst9sMrl5nZmaGbqqYmZ6mEnroNEYKiBONxvb/QkoqBoJSFSVd6ksePvx+MWo2KrnGVUHmvEhtPPKCEfALB8fyf3SBeIw7P7kD5Hk+UVSyjl7uII2jPvkBf+igzW2mswVCI0iRUhCGAmMSoshjarJBa3+fdhpbTo6xSLEAl0ZSh9aK0TmqYgnZRgg67QO6vR63b93lRz/8Eb/yK7/Cl7/4JX7nn/0Oy8dX+PP//Oesr66hsxTPk9TrFebn51hfXSXJYttEWNpm2HmbGq00WarQmcYPfKrVKsPhcKSWPd42xGhMZpDSt1wsKLoiWD6Wrc4bT+Pm2Iv92Y3d2PDJ8XMHV10rJEI5xwtA28apHwv9KUbzo54/qtQzxvuFa+6XcH5sXw6cE+B5sLAww9zcHFNTk/zkxy+zu7NnO6S7FJARY5o0Y5GtkEegZ6PRmaLVOuD7P/g+Wztb/Jv/5r/hzJkH+NVf+1WGcZ/t1btEYYgnpRX4KpeoVSLqtTK1StnyCTwPrSHNMpI4JY2tuFWjVmNxYYFBP2Zvr814ygtjik2UXzkPyMqruyqBQrISl77CQj3GL/rsGHdY2Q8qDi0cpZR9Pes12Ry3sFCyb4yVTs+O9oYSH209PuL345oJniecA6pQKnX/DFp7NBs1Hn7oAjNTU7z2+ttsb+/Z2RAir+Z3yGY+d4ff0Ao4urkzikwbLl++zP/z3/+3bO9s89u/8zt8/Rtfpz/o87d/+VdoD3zPo9NpEacxxmjK5TLO/SBTGcnQwvM606BHjli303fUy8PjOvq83JOr9iT4foDn+RiVkWWHK3WsArhXpODytNfhMbe/832P2ekZfv//+vu0Ox1+8MMfc/X6TYZJhlUhtgKM+Ujl7aruZ1fvP4FjCJH7NueMGWNIs2Rk3JW918WFWeZn5yiFIW+9/SFJMihge53zLfLXM6ObEVgug8DqFNl+Vwl7e7v8zd/8Nevr6/ybf/NveOSRR9Ba8z//T/8T2xureJ4kHg7YcKrg1Wq1GHejrbBcPExQWTYqTcYwNTODMBk7+7t8/8cvMugN+MrnPs3DF85Tco2IA89HuudXyyHnHzjNxMQkc7Mz/Pinz/PuB5dJ0lG9pZB2bHw8As9jotHg0sULHFtcwPcEsVJkScrBwQFXr15je3uPTElXNWeb0+bzbFMu2iF29zGu4shc3YMQ3+cPzKi9jlIpmbLOq1ECpS3n6fTJFeZmZ3jttbe4fPk6SWoLJoru2kJY1MeMiN+CvCed5+yxJeL2+13eeON1Ntbu8vu///t84Qtf5Dd+4zdotVq88JMf4skSCMPe/i5pmhZIQT5/SikGw5gsSTEmI44HxHHCcBgT+AGmVqa1t0U5KhFFCXGaIT3bENPbb1GfmqbSaOKXK1bEEHNo7X9UJG+R85E4Zd73UbjCCCEEWaoQjD/HoLTCc/c9brvHi1Y8T+LaoI2C3fsFHUdRoOKLdWLs3nPUBSQTzRrPPP0EJ08c50c//ik3b64ihH1tW5xAEci42M19pvzziuI8tIFNwsbGBn/yp3/C+to6v/u7v8uTTz1Jf9DnT//4jxn2NUHg0263aO3vY5S1m8aJkmudoTIbcGhlgQZpcClAQ5pY26d1fn7ndsFh5SqzwASjrusWvDOHf3c/mzvmPOYVtrkshUXn7Pjm/CzIK3Jzltg/Mtj/x1wGDOIj19r49UtUe9l3MM4RkIDvSbSAixfOMjc3x49/9Dzvv3+l8AqlcH/hzhTPs4bOF9a/94QlrqlMkWa5jLbh+vUb/MEf/CH/7t/9O5aWlnjkkUf56fY2c1PTzE7WCaOAiWqdmak6zSigEgZopRAYVJaRxinJICYexIg0w8syaoHHZKNBrzukPxi497ILVo05HUUFmLSiXpYIqzHGec7KOXDeGLSn7LjkUKzVk7kXkhVYzpHBLTChLUrhuY0i8/5eR4b9F8/n6KljsGN+ZVpZ2fO8YF9qpBF4As6dPc3S4iI//vHLXLl2nTTLYUfhjLcqDITnewVpTkrPIRKq6EMm8Oh22vzZn/0Zp06f5pOf/CSf/vSn+eE/fI/NjTVMpAmFhXANhs5+i+5ggFF2zJrNCWaXZ2k06vR6fe7evWuJfPmA5EHbGDQqcsTHLrYRFJ5ZB833PIRvx9jaoxwdcqwekTtxxgkPOpTIVTnoTBGVfb705a/w5JNP8T/89/8v1tY30AikH9ju5Pn9HZm3X25jj2FPYnQ4Fa8nsGRDkxEGIU8+8SgL84u88OKrbGxuF4ZVSifQqC0cbNe1xHdIjXaOsNIGo22fN50KXn75JZrNJv/23/5bLl26xIXzF7h1/SqBJy13wZNMTEww6A3odDpFHyZbzaGKzyCwqMJkc9I6vEoSZwk/fvkN9vdbZMrjmScfI/BtFannSQJhKAcCXbUG8sK5s6hMkaUZH1y9QapEoWwlpSQMAuZm5njsoYs89OCD1EsVsmxAOohJk4T9/X02N3cZDlMEoUUWhE175SPtCeEOEcV/ySuKIpSxxP68rY3VFLPufuALZqabfOXLn+f48nGef+El2p2uRVudp5OneYW03MHQt33yjLDaVJkLqIxS+EFEt9PhD/7gDzh58hSnT5/muec+w8sv/IRer02pVCIMA+r1OlprWgctkti2JtLOCZbC2l9toNNrk6QxSTqkVo5IBj0mm02HpsRUazWQHq1+j0xIpmbnmJpfoNmoszA3QRSGbnzlfW1SsQfFyAnLf1+gXC4lk7fqAfAMltSsLZlZ6xyd12jtF/ZWSh8hMsdLchW6DtS4JxAxOG5ZvirsHGhtzwYrwCnxhY/ngx9Ijq0s8Kvf/Do/+fGLvPXWuwyHmU3PYZC+N6puck2ffT8sEFKts0KQ0SiD9IEs48UXXmBpaYmvfOUrPPLII/zkRz/ivXfewpiQcqmM74cEgU9v0KPb75EpVew74/q++dI6tgbbviiX+xh3eMY/Zj7SAuHOKPdLoYsWF0dJzIcGbmxeC4ldY5l0Ztw2MloDUnioIqV2r4089B6m+F8Rlx76i/sElRKP+zyzuD628zPyAN07CoFncLCbYG52gq9+7UtoY7h85RogicLA9kAZpsUhZbDpMCEtV8bD5imFyBCALyWzMzN88P77vPfee3z+85/n3LmzPP/d75L2h1CvEkSSsh9ikgyFy4079GQwGBAPY3r9Hp29NtkwZtjuMGh1yeIBJo+qCu/18IAX6TBjU1MFATqfVNcJQXg2VQO2FNPgun97xjlUakT6E2LMqQrc2jJORdWl2YxGEIAZq2b5yOn7+dd4abeUlnCe5aiIFEinOySwh+jUZJNf+ZWv8tLLr/Kz195EKfA9n3KlxMFByx6+joQcBL5D/iSeF9nDT6XuRhVRWKbb7fD97/0DTz75JMvLyyyvLHPr5nWGwwGiwwhOVQYPzUR9gkcfeZTHn3ySY8vHqNcadHs93nnvXf7+O3/P+vo6yijuy2XLDRpHfETHTUq1GtvQomi06ybGpTeljYycgKLdoBKTGXzP49KFS3z1q1/jjTff4oc/+hFxnCA815hWpyN4XwC5oeHjU9iFi0BtQ14olSOsUT8i8ifyRsEKpWKWFuf4xte+xI9/8iK3V9fQRlAul8iyjEEvxiDwfZ8wDGxqUxv8IATfYxAndv9pRaVUQwYRL7/0Ir/2a7/GAw88wKVLF/nW3/wlvUGffrdnUS1pdX60GQU2OToosONpD3DJ6vo6SikyGYDxGWSGdz+8idbfIipVePLRB5GeJAg88GzAVAoD6hXBZKPO2dMn6fd6rG9ssdeJccApQgiajQZnTp3mwtlzzExMoVWMyjQ6zVzX9I7lBYUlNAEKD+U5MiLW8RHa6qCoVP+Szqq7irSATalWq1WUHqUc8vm1zoCrojK2B9kjD1+gXCnxve/9iG5/iOcHRFFEu922aRUhCP2AKPBtYC0lQbnEcBhjUhucBL7gxMoyt+6s8uILL3D69GkeeOAsU5OT7GxvMhj0C9TULlNDrphqpIMHjSkYACpTDFSf1dUBvgBfwMF+mzAIGA6HVGo1wkqZzqBPd5iQXrvphD4nWZhpsHxsiWNLS5TCiHK5TBiG+L49diwy49lD2vF5xkuuPS8/Ft186MM7yUPgGw+lPLIsc2eS7/hA9vWjKHKvmR+EcuzwPDzPNqCHQm06f56xKBPSVi1ZbqJBeBq0odGo8LnPf4ZavcrPXnmTQT8G6RGVSwyGA1SWgrSfx/c9PC9wyIrVm0uttCO+Z9vURFHIT37yEx577DFmZ2c5feYMb77+WtEYVrozSKNR2mYlJNbG+4HvUNQQ6VmpCKXyLupHU0bjHMcxlNqNv3TUgZzSMf7vKM+qCBZzB0kYjMLaMazIi5CicL7GOh9aZ8uYQ/Px8dNhRz4awiK8P+f62M5PThzNpapzY289RsvVqFdL/MpXv0SlXOHyletFV/UsdepK2K9hWMb3A5I0sY3+co9TCJQy7O3tMhzGtNptmxaSVpCvFYYszEziVjhZmjHUGT72kFKZIh7G9AcDWo5k2e/1aR20OGi16fdT4Gi39iPpCVw+VOfaAfZ3UtoD0To8jIxwvqOcl6scQiSlV2z2vNw916JxPHibQRSOpDc24VmWjTlA/1g2grt7kyMGIIRH6NtWIlppV03hPGJhSc1CKoRIqZTLfPYzn8APAt56630yZasmgiAgn3qAOE5duaR1oCy/hGIXqSxDG8HW9jZxnFCtVCiXy+5gx0UDdr4DIZifnuTpJ57i4sVLzMxPE0iIhz18X3JseYWLDz3CcBhz0G6RqJSP4w4WQ3ookhhVNWhh5f0t90pwiDPkvNzJZoN/8ivf4NjyMv/hP/wH1ja3wAvwHLqhjRXvskJruaPi8O6P6/3kJHV3LxMTE/QHu2PQfh6BGUAjpHHOVszMbJOvf/3zfOfvf8j6pu3t40npDKG9kTS1CE/o+W4FOh6bNghpjWVmYjKl2N3b46wQlEvlcVNZQPv2LvLfO/fPObWi6GkHg3hQ3DvCRsaJyvjw6nX+01/9Nc2JChfOnrIRs3bjjyH0JFEgmZpo8uRjj/LOex/Qfv+aPa+dhMbM7CwXL55nYWHOpcO1m19NPIw5OGiBEURhhBYBmYEEXD9Xd+/aGmSZR8i/tAMkin/GwOTkBJkeYJtAH46e7Thmzl9KEdLjwvkzGK35yfMv0R8mIGzqBmOREa01SZLiS+vACm3XbT4PWim2NjdJ0oT1zQ0ypShFJXw/HN2fyYM7Z3+K9TmK/8eT3LlAoWU8GpJOv3A8B2kL2emRYUgNpEh6gwNaBwfcuZbyfrXM3OwsURiysrLCwsICjUaDZrNp091Oh82Z8tEo5gewtNo2whOFszp+WRV9VaApdozsQay1JopKqEzZT6r02Ar+RdNonxmEQYG6yiJYsvtEipzTZ6hUAj75iaepVqo8//wrpJlG+LZc3druHLWFUqlEuVSm22mRpa6owwW/aZqhBwPSLKPXHzAvPSqlinUOjUFoqyxvtC4kksAi314YUi7ZlCOOyF+4FFI4RehxGzh6gTydCtoFLZ4rRBAOCRTFns7nZ7wyzBhTjI+DD9z8ec6JsqhbzlsTRiMdAqu0AuUa1X4Een7fKRr73hz6zSj4yM/A+10fv72FcTLkeqSNMzLIICQIpajXq3zi2adptTrcuXOXkcEWDtkRlMoRvheQZimZso0WtXOq6o06BghCn+ZEkzTLuHbtBhubm5AkTE1NEJYCkiQm9EsYCVoKlHPupSdQRtNLElr9AXutDp1en94wJskc63wUq48N4eGRKpw99/kwYmzBOdlCczi610YjpC219/0Agc+oQgl7gwa3ELRDftxrOvKtxqJfSmXoTBUdjXMP2zou95/VIn3txjwIAsrl0G6YTKGFQAhtUTjAYJn4tnN0gvQDnnn6MZRWvPXWuwwGPYyx6UTr/AmQHoEXYIwmSR0J2S3+KCoxMzfHxuYmjckJ8D329ve5c/uWPaix4pEegjAIeOj8WZ567GGWFxdpTjTRJLR2D+gPhwwShfEipiYnWFlZIbmZknXbKKVHaE/ugBqbUswPg9EcHoVIx6yt0aCkVal1qu6e9OzYOAOgTcoTzzzJl7/+Vd56+y1ef+sNR+q07WWFAd8PEcJ6A1plZEIVwmuF7tO9M3XPehvxEXIjA3Nz89y8mVeKgChgaKwDKaySrRX1zKg3Knz6U8/ynX/4ATs7e2ByGqZdr57nUynbLtDdXqeozEQIpOdRq9fo9gdEpZB6s0EcJ1y5/CGZSkd95Iq8gXBryDqOQo7dvxEORTBjB4coDtdESlKleeXt91n+7o9YWVqiWbNNLi1J0lhRN18QBpL5uWmOryzx5geXySvppDRMT0+wuLRIuVpFqZhMKzJsB+1BnNLrZygdor0AYzx7HEhTHOBWf0s5JE0ejmjFURtxdP7u96Pbm8IwNTVFr99yPAyKAMJ4LjEpNFIa/BCEUAhPceHSWXrxgOdffJnhsOuCWDkKZMISYRgRxzFpmjiUErfXQ5TWxMMezckJtBBsbmyyt7dbfAx7ayM5iDyCzUvWhTGFmGHuAEkhyaUb8oPayv8IUPlBbG1DIARSaQSSfjvmdmcVIQR3b25QKpWoVCusrCyzuLjI/Pw8ExMTROWSS9OM7NpINkG65TYqJBkh9KPhz0u5QVAuV8kyRa/TJ4sVAZJAY5uJMs56Gb+EmyODFRT0qdcbzlQ4R1MLS/HU2jk0OYpsKx4feuQ87W6HN958hzjp2YP9UCrNpr7SRBHHjodj7NrIjKJaCYiTIbVmnWqjRqY1t27fck7yCJUcR2iEgcnJKU6fOcfysWVUlnHl8ofsbO+SZom1cQ4JG08rFusBKJo6C1v15yAa98UGY3bfuwCs8Iyt48UYnwdACg98iZBekfK0UjDKOo7YTg8ip3xIv6BOKFeAkK/PESiRO0YfBQTkT7TpyXKpTJras+t+18dHfoQ1DmmaWY5K8fs8pWP782RZTLNe4eL5s2xtbTIYJCO/TFgORrVUIoxKdHv9oldSDovF8RDf91lYmOPMubN0ez1+/MMf0el0SQcDh2ileCbDmAm8etktRWtQgkDihwFaSLrDmIN2h25/wCDJSFLIMlxOebQsj34zitLuY/zGbPz43Pi+T+iFCF+4Und7QGpHBs2jHOszWTKdFrowHFJY2D+QuXq0j8oysjRDqayo2Pm5lxk5PgD1ep3mRN3yoJJk1AbC9zHS2JSlFxKENgrLVEIQRjz88AU2NtZYW9tAm6yIDjxP0mxOsrR4jM3NTTY2NhyR2B7GSina7TZRFPHJz3yKIAr46Y9e5e7qXdv9W1jtp8WpGR5/5CG++LnPcHJlkSgMCCOfVCnWN3dY39xmd3OD3c6AYaLxJDTqNbq9TlFRhRiV07obGE3M0ZTm+PQVzg8FEiXMiOuVn1JKK46tHONf/N6/ZOdgjz//i7/g+u0bpNoelvkh7HkBUvhYDfAc3VCuumEM0r3X3h6ZNxjVjFhH5fTp09y4+S5KZcXnNe450rOl8EEQ4Pk+GI1WCbOzU1y6dJ6XXnyFOFYF4iaEoFqpMTc3hxCC7q0umdG5GbfkyDRFq5RLjzzMsZUldvZ2eOnFF50OlRkhnWPEUYchYLApnNyx9h2CY90d17LDjZt2Sr1ZkvD6u++ztrFN/fRxOw7SIDxbUFEqhfSGMeVKxNKxBXxfkiZpgc4dP75MpVZB+B7GSAqQX0CmNJmWaALby0polDiyFoRwlZcegZsrkxknpJlDqEen7x6X+silkdJnfn6Oja27tsrTCSt6nn1Zz7Pv6QUeYRTawFIlCBlw4eJZrt+4xp07a8U95oFMtV6n2Zxge3uLYXdQpB2FcIir1jSaTZ589mmMMPzkpz9l/2CfHLEbdyLsMjeH51O4qNnz7WPG6V0ZGNXEHUlT5P9yJAFRVLoJN3DxUBEPu7T2O2yt71CpfEC9UWd+YZ6Tp04yMzuDH0gq1QpRKSr2ohTSOVxj620MPRsfH9/3mZycotmcBATtgw6VqEx7a4vIk8RGk0LhsI9fIzth7bDn+RxbOkaW7Bb7UeSB67gmW9FuA5CSiw89yNrGGnfurgPjaVTrYIZBWBQEZI7bmaeMjPvh6aefZm5xgTs3b/P+++/bgdXa7XucThX4gc/Jk6d5+qlnOXP2HHOz8wyHQyaak7zxxhusrt6x+9kBFnlaUcq8J6JwP4+cX3uN990am2dDkckxRrjiIsuFzVOYOWJk3FeMTZ8qJxVTODZu0Uo3b0ZDlmkykZBmKVpnxVo7et1zIhs3KM4plEIyMz1Dr7//kTy+X8L5yXslKbQe/bl0WjZCCJTOK5Z8jp84xuRUk/6dDQdRus3jcoZKuaox30fpUdniYDhkbmaaf/4v/jmTEw2+/93v8cbrr6G0Ik4ybq+ugk7QTh8nHlYYDKvUq2U8Y8tD/bBEpd5gZn6JgQIdtOjv7qHj+FC576EBLCJuMbbgcw/nMLgGI0fGBU9O48G3pFmRe9uWZW/Tes4LxhKjpZRIT6KlsK00AM8Ip71hF6nvSeJhTLvTQmVqdGh/VEA6dkkpWVhYoFavoNUGylgHKsC3OidFQ1fp5s6KZ2E09XqJ02eOs76xjqPwATY3n7juyRZajop8vcFYEmaW8unPfZYnn3yC27du8ld/8Z9JhgMkhrLvcWJpni9+5jm+8NynmW5WnB6UAaHwjGZuskI1WkBnKasvvc5ep08yTPCkVQnPydV5xV3eMgPGDTBHvhmftyOQrcwjn7Fcs4EoCvn13/h1Lly8yB/90R/x9jtvk6TpSNOEPH1gDwyLPelC8t8SxcVhSLc4OA332dfFr6UU1Ot1zp49y3f/wbg9ZT+vJS0H4CqlPN+zKR9l509KyZlTK7z77jsMhi33nrIILPr9PpCnYiwxMy8dPjg4YOXECr/zz34brTP+6i//s0Xt8k+qxxNdwuXWLQImPEkURtTrNarlEkYbep02cZxa0mixx3LeIMU4JYldUxZhlHhIPN+nVCpRrxnqzSZPPvEEP3jhZ7x/+Sq4583NzRGGgUsbj9J79q3E6GAqfJjDmyevUMmJt6G0aY0sAzO23caPy3umLV9zJkdTrEE/feY0b73zugt+lEPvghGHUOQVd06PSduVVS6FnHngJHfurmF0Xuk0SjWAlROQ0kfrrLCnsYnxopBf/63f5PSpU7zx+ut85zvfJkszxlsUCOeOjm7fuBSpx/TEJI3JJlG1ShAG9LtdttY2iIfx2Pq9z+fPneL8c4kjLT7AorJGoDNDt9Oj1+2ztbnNjRs3mZicIIx8lpaXmJicKERqS6USvvTxHVfm6DXuGNbrder1JkEQ0u/1iPsd0n6LSGTMTdYRZHT7MbFyQUrhshd3bm2iENRrNU6eOMXVyztjezc/jEeHeL6flVIkSlOphJw9d5rVtbUj6VOrxdNo1Bn0B/a8lB7GFdrkfNWHH3mYX/21XyWOB/z5n/8fHBzsOWciv0OLwNdKEefPnuWRRx9nem6eejWiFAWEgc+DD54jy1IGgx5bW1uHUj/5Whmv4DpazZV39Lh3sEdAR35ZmYugKILJR1IbyJRtx5O4AD5Hwsf5Q9bRdFw/aZw4pSRN3X4otqs5fCPjC4vc+ZaAhyc8lpeWWVu/QZom9/kgv1SpuxltVDW+uEcpMK0VyonT1aoVVpaXuXN7/dBCyMlu9VqV/YMWSmuSZHSTzWadf/ov/zlPP/M0P/7xj/jDP/wD+gOrLKuAQZJwa3WNXr/Dys4K05NNpqcmWJyfZWaiThQEKCEwwiOISkxMzxLUGnRTRXewB1lyaCzvyfFbRicFZxP3c44yFLCgGUVKUliHQlrirM4MoFwOOi99z4lnYwvN2FJVsPlVBPhBwPLyMhfOn8eXktW7d7l27SqbWxsM46GFU/+R1/Hjx+n1O/R7oF2k4fk29ej7HkEY4Pkemcps515XPeAFklMnj/Ozn71Fvxe7w8rmsIdxzM7ODr1ejyiyhOc0s6RfP/B49hPP8nv/6vdotw74H//H/4Fr164iBARC8tjFB/lnv/5rXDz3AOXAwyPD9wzGKJvmSxKMa8+wtDDFyeML3HnhZ/RjhdIQhoEVg6OoW3MRar4ec+fwH+EduqvgfmmDFuBLWzHy4IMP8ulPf5rLly/z4osv2vYcxjkBLsoQCKdbYZEKzwjQChHaQz1VGWmausOvWDz3vQ9hRLE+AObm5qhWquAMo43QPAQSz/MJw5AgCN0BOsZj0hn1epWlxSXWVnewlS4eUmD1sdLEEp89iY9PkiRF3n5+cYH/y+//a1aWj/HXf/EXfPtbf0eSxEiTK1fnn9t9DG1h/2q5xPLKCg+cfZAHTp9iaXGRLFW8+vrrvPLKK+zv7SJUVhySxs2RJz2Ets5dmlqPw/M8FJIo8AiCkEYjIIwizp49y2/91m/xgx//lFbrgP39farVKp7v43mSLDHWiUpT0iQ9PLfjl8mDk3z12EtKgZABQkIQBKjUuChd2RSLGR2WBRBxCAHLf7RVcTMzM/R6PbSuucAuD5Bsv6kojJCeVzhGaZohsGnME8dXqFar7PT38QQIYVA6YzgcoFTNOcGei+ztZ4xKJb7+ja/za7/+Ta5c/pD/5X/+f7OzvYXN6do7zNPiozu2iIbv+Zw6fpJPPPsMyyeOM7UwSxiG9Ls9Xnz+eV564SVarfY94ylcxF18RRStZEaSc4cGv3jvPPPcOejQaXeQnmBtbY0g8AnCkKWlJaampqjV6izMLxCGYUGcHg9Ufd+nUqkwNTWFMYI4jul2OpR8wcPnT3Pp1CKbmxd57/0Pee/yNW7cWSN28uE5+bZwftw9T09NMz09zZUcMXP7VuS2pmh6La3isspQmSbwPY4tLVIuVxj0D4oxlgLKUcT83Cx3V1cLh8MuR3sPpx84w3/9r/9rwsDnT//4f+dnr7xstbvApo+NwJOCalTi7MmTXHrwLFP1MmWpkWmfQWubONWobEizUWFpaYFWu0WWpdh4363d+/Daxp0afZ/H8tk86jDZs3zUVzFvlZG5DJFSyla1ufp/KUd/L13FsHVsPaLIA6NJ04BeTzOMlSvP/8VXEZwJiSd9lpdXePXNj3ZxPrbzo1SG7/n2oD8yaIcZ4dhBMJrZuVnCMGA4jN25ZEs2z5w5w9NPP8Nf/NVfc/vOqvPefc49+CD/8l/8c86eP8e3v/0t/o8/+0+09lsIpZHOYBoEcarY3N5j76BNGPrMz8/y2EMPgVmkWi6hNHR6A3rDIcM0Q/gBjYkpDjpDhqly3WV/3lAyimiEOHSWHl04xphcZcohWOMHUV6+Px43euQ0xTydYBySUavV+NSnPsXjjz9OKYrY3tike9BiolpnWO1jMk2iUxRqbFMK7mNl8H2fEydO8sorLxboUxCElKKIIAzxw5AwiPB8v3DSrGOrkVJRrVaYm51md2ff5rWlQUqPudk5fuu3fodXX/0Zb7/9NmDRl7m5Of7Jr/4qX/n617izdof/9Q//kMsfXMZkikgYnn7sYf7vv/vPOLO8jO9kAQPfpgKUwqb3shSVxGRJjEpTJhtVapWI/dYuCotw+J5PpjO8XPsjP8TM0WHIOVJHZnfM6Jhxp8nNgRGGmdkZfvf3fpfZ2Vn+8A//kCtXrljtGswY3wvAOrx5RBiGAZMTszQaDZTWrK+vsb+/73RGcrTlXhSRHDUAN9aC48dPsL2zAzienetJF0UlgiAgCEKCIBjl7LGQPEaBhLnZGTzPI8vyaNUQhiGPP/4Yx48f56//9m/Y29sDDOVymaeefop/+s/+GRNTDf63P/wD/uF73yfuDbG5fue0FDdux0wKQSUqceHBB/nEpz/F3NyCRRtrNXrdAZfOJ3Q7fd5++3U6rYNi3IvXAg4ODrhz5w7L87No5dooBB4NmtSaoUOsYqoT0zz55JMsLh+n1Trg5s2bLCwsOHRA0BoO6XZ7xAPb4DGO4zEJi/vDpaOCBote+0FIvT5DFEb0Oj0GvR7dfpc4Tez8uxTpaAYLJor7Z1MKkxNTCDx6vV5xIJTLZXd4B27+fIv86qxYg0pnkMZEUcjU5AS72wdun9vig5WVZb75zV/jb/72b7hx86Z1Wj3JiRMn+K3f/h2efOZpXn31Z/zRH/3vbG5uY1TmqpRsxacYu9UceZJScnz5GF/6wuc4dmyFcr1KvVZHehKVZpw8eZKtjS0+eP8DhsPhocIMxkag4Ejm6+MouGmKhDV5sGzXe55OgjRRKKUZDhOudK+6CsWQZrNJs9lkcXGRxcVFqzpeqlAq2b5oU1NTCGEdn35/SKNeY3pukkANSeOAesmj5MPU5ASlUsSVG7cYxjbg1kd2o9GGhfnFwjaMiiAciRZVOL22WlYz6mOpqJQtT3Fv92Bkm5zjsLKyQrVaY2/voAg6Go06n/v8F/iN3/xNkizmv//v/j2vvvEmSWxFegunA2hUqzzz2KM8++QTnFxZpFKtIKRkGA/Z3ttne6/F1v4BcZpRb1SZmplkGPfRea+YwsbkGmri0D/7LlaJ+hDSdiSYHE+ZwRHlaCfGWujaFWcghdOTp8k86VGpVDl//iILC4t0Wgdsb22wunqL7Z0tev0+mc5G6+gXeEJCCEqlkGPLS/c7Eovr4yM/WmHyGhchirTJuLKuUu7g1xrpwUS9QaVUZjCIC+G13jDmyrUbNJpT7O3vk2YpZ86cdhLtT9LrdfmTP/4T3nrnbVSaOmZbHhWbQgQsMwYVJwihadZrNBs2wur3+6QKsiy13mde5i0kJSfSlfX7hRG2Y5qbs8OQMAYHE+YH5OEy9HwR5JoN4/DhqJy6eCkOvTAgjYWIEdCcavLpT3+aRx5+lND3ONjbY/3ObTp7O0xUS1SPLbAZCHZ2d+nFGZYGx+H7FUVIS7VaY252jq2tLebnLZG3VC4RRSWn1xOQN2mVUiCMJsOmKDxp5eGbjTqFeBeaLDVsbm7xd3/3Lfb3d+kPekxONnnq6af48pe/TLM5wQsv/JTv/sM/sLu7B5lCqJSFuWl+73d+k4ceOE0owTMKKUEKC/UnuEMlU2RxSr874KDVJo1jGvUaZnWbNFMYbOpLJy4iKBCP0SzKwhm5//I3xrhGtS6Wc+vSlmTaTsif+/zneOaZp/nhD3/I3//939Pr9dyBIcBYQr29AY2HlUSYnpniqaef4uSJ4xwctNje3rFtHJRmZ3fHGk0x0sE5tB4O2RlLXj2+coLr129YhMTz8D3fGftS0ZnZ8/IGvfZ1c00mz4uo16oEQUiSDC2hXUO31+edd95ld2+f/f19jFE89tijfOWrX+HSxUvcXV/jL//qz7l+/RoohU4za4Ad2V07IrNNFUE58DmzvMCFB04QmJSk16bXCkn6XYbDDFTGwuwMe0vHuDLokjmDDwYjLCmy2x/y9z98npmZWetSaU0YeUwNh6xEZYT0ydKYMEmoVkrMTk/SaFaZnplibnaOkucRqIxev0NqYKfVZeegy/rmNr3hwInBidFAi9x1G6EQoUMazl+4wMz0JJ12m+2NDVZv3WZn13DQUcSpJVPjmEwU/z88hVJ6HDt2jHanzXA4JIoiqhV7UIdRVChiC2nTNUZ7LpWbkmVWQsGTIY16HYzV3BFCMhzG3Lp1h7/7u2+xurrGMB6wtLTAc889x2c/+1kQHt/+9rd44cWf0uvasUZpixxhRVXzNWwc9CWlYGFmhscvXSIAugf7pHGfYbdDpjXDwZDBQYfpeoO5ySm2draI05Qss85YUYyR2538qzmc9rJOw8h22/sYSUpQpEFk4aAZBYnKSIYp7VaXNX+DtbUNms3rBL7P5OQki4tLHF9ZoVapI4yh3+syPzfL1ESTkonRfUPiGUIpMQvzRFGZeq3C0sIMb7z9Hlt7bdIcxXf73w9CHnjwATY31g8d1NJVuI6CLIfJFDYoI0sBE1CvVO3Z4Z4sjGH/oM3d1TUmJyeJ4wHlcsRTTz/JV7/6VU6eOMWHV67w7e98i/W1dXSmUGlaiJl7AhqVEl/6zCf55le+zOLsNKEPQeAhPckwKVEtBQyGA67fPKDT65NJSaUUEUiJEoLD9tA5nE73ceQajXg2o8BgtG/Gbeho1ZsiuM4DvHGxSaAYPyns/XrSpqeiqMzTTz/Ls88+iyclndYB1y6H9Fv7qDiGTNEfavKk2UcI4zt7orGNjeuUyhGZOioYPLp+Cc7PWLqGkUeaN5GzN2JAaaTxCAOfUhg5EpQkQ1o9Hi3Y2N7h1Tff5PzFizzy8EM8+OCDtFot/u7v/pbVtVWWV1Y498A5fnDn+yjltCdM0TLSTpCU+GgeOH2Sr37xOVaOLVOKQpI45qDVYWfvgDhNGaQx7VaH4aBHEHhUShHDYd9Cgc6QF9oDwrlZwh2eZoQQjE98/nPeE8ym/HQBHeZjkr+uA62s4dG5ztCIWeR5kuPHljlz8hRCZ3T22+xtrNMoBVx47pPMz06j0oRbN27ywZXLvPnu+9zZ2CTWlsR5dDUIAY16HSE8Op0uJ0/OMz09TeDnGhC4CierdiuEJNPOIXDiXIHnUa/VrFSBMrYk0UVvOzt7HD++zJe+/AUef/xRgiDkrbfe4pVXXmF+cYkLDz7ISy++hEkSKr7kG1/8LE9dukA98gg9C99aNCIrUh7GCFSmUcrQ7ye0WwP6vRhjpM0ha2277uQ78iOigHGn9h7/R9i1iysf1ZnC9z1LNsf2pjq2tMQ3v/lNdnZ3+MEPvs/W9jbKjHLVuaaUPTx8vMDj5KlTfOKTn2T5+Aq+FGRpxs7mJibLCISgEkYMhso5kozW1zggODo+CcMS1WqdO7dfxpMejWbdIj2+za/n/DLPcbeUEqAzjMoAz6YOgpIlJwqN0R5GWCO1sbWL8Dyee+45nnjyURYXF1ldXeU//K//H5I0YWZumoWlBe7euTPqZ6dtmwHh9rgvBZO1Ko8/fJEnH32YxYU5olIVjaQ/6LK2usN+q88gzuh3e1TKJZqNJnu72zbNawTGs8RIJQOu3l7nuy+8Tq1SxQ88Juol5rt9tIyo1au2KtSA8gMwCbVqiVqzZp1A6eGZgMmFJebSjL6CdgJeZUhYrTDUA0xmLVbOiywcWRfRH1te5p/8yq8wPzfHoN/j7u3btOQGkWeolQKSWNq2OAaXbh1zpgocV7i9L5lfmGNvz3bprlUqTDQn8Pw8MLF7LtcM1libgLbr0Qs9hLCcrhyVsH8miJOUza1tzp07x8OPXuL8+QdRSvGjH/2Qd997n6WVY1y4dJ7vfff7ti1C3vOuQK9FoawvPTi1coyvfOFzXHzwHLVqldBx+PYO2qxvbLG7tc3BQYtk0GeiXmcw6KE7HUskNXpUQp2fDcWZ6MZl/MwQwvX9cg6Esbpowh2IeGPUAruRi/2M1mSxZm/ngIO9NhJBEN7lxvUbyE99hn5rQDIYcPb0Mscm6/giwzdAuUTke2RhRLVSZmpqimq5RKVcYmFhlhd/9jpXb9wlVjaQFEIQhgHNRoPXX3sVgU2r5XvOfRCECxpzh0EKy3uTwqp3l8tl3JQ59WSJTlLeff9DHn/sUb729a/xyCMPMzExwY0bN/j3/91/S6VaY3n5GP1Bn431DccDtePRrJT5+hc/xze/8iXmJ5uUAlvt6EuNkYYwMEzWy5xYXGB/54CfvfEWB70ecWbwhRU3lUqMSWY4Bk6uWTFuP9GFnRfIQh4lJ50f4nIVDpLr1mBGjk/+3HEHMl8TUno0JyZ5+umneezRx4nC0DWJvcbG+m08qZlsVsDEiIOM7nBIJuzqPZR5ORI0CgnHlhfZ29smTVM+6vr4zs+YdkeOBAg9ag1gER/7zxPCKjlLj0q1hgxKlGo1pmfnOHn8FKdOnGJ5eZkw8Ll58xp/+qd/wrVrVwnCkOnpacIwAiBNrA6QySNzhItCbdXQ8sIsv/FPvsalB08XUaNQgigUlMseM7MTeJFHq9MmHvbQCndfPkrZwRlv9SIKXDg/nPNJHuW6D6dLRgM/3uPIRlemkAnPHwcnyKhxyrs2gi6FIbMzM2RxzObBPsNem6X5aR48c4p6OcTolEG3izg2jc8J6rUSL776BtfXNhg63QdBDmdabZfZ2XmUMlRrNcIwolyukpfrj9+TFKKoBsDY8mTPcYJq1QozM9OUyjWak9OsrJzg1PFTrKycoNmssrW1yk9/+hPeeusthsOYyclJVJYyPz9PPBwijWGiVuWphy9R8yVlXxD4tpTUGEid56Yygcps88DBIKHV6rG+scvGzgH7+10MToTwfiX+uTPC4Y15dGPYp45D7y5FazTgIYR1Wr/whc8xMzPNn/7Jn/Kzn71qK63yqBZhkUjjjhEpqdWqXLh4gaVjxzBGs7u9y/bmGv32Po2ST3l+lm1fsrWb0hsqUjOG2B35OHlAMdGcpNGYoNGYQEppNTzuwxOwKa9RpUjuSEdhgO97TDSb1OoNqrUms/OLnD51mjOnHmB6eoo0HXDlyvv87d/+DTvb21QqFRoTDRqNBhubm7Yi0hirReX0hDzAF5LpRo2vfO7TfO1Ln2NxbopKFCCkjzKCdrfPWjXgjXc+4MbabVrdAcNMU6vW6Pe69Ps9R2bUth2MlAzSjFfeeAvf86mUS0xPVFhZmiVJU2Zmp+l22xhPcvzMGerNJgGhnQ6JVdNVBhmGzC0tEVWqLB0/xbHj60zPzXPr9l12dtrsH7Tp9wekYwR0KSWLC4s8/shjTDaapIMB3f19DjbX8bKE0yuLCLHAxs427314lf1Wj4w8WBoRPMcv3w84ceIkKlPUG3X8IHAlxPbEl85W5qX1WZanBizpOPBDBAFRGDE/N0+11mBqapYTJ05x+uRpFhYXKZV81jfu8H/+n9/igw8+RGtNszkBaCaaEyTD2LJOzegAzYOvXOB0ZWGO3/jal/jMJ55iol4l9D2k9FBaszBRo1kKiHsdbt+8zkG7Q28wtDxIz4ASjhjrbOH4rhpDvg8h4eYIsj7GH5FOkXjkGFknKXctTR4rCPeeWPs5PTmF0YrrVy9zsLvD45dOIU2MNAbfkwjPww8tspalKcKTzM5MWdStEhJGHqXI580PbpFqey/1ao1yqUIUhAwzWXRDH0+DWVsuXSocW+Ho+7aptvEJgojp6VmCUon65ATzC4ucWD7ByZOnmJuZoX2wy7vvvsVrr73G9vY2lUqV+fkFjp9aIR4OLPouJBLD7OQEX33uk3zji59jYaJGyTMEnstGCG2rgJVCKkMzjHjg2DFuXb3B5voGmZCE0iOTHpmQBU/SzpatWsv3uTGeQ82ddTK5bczRUlmIdY5rK5kCIMBlNt0cihE4chgg8Wg2J/niF7/M+fMPWn2qrXW2N9ZI4y6PP36JhZkp9vd2WF1b58at27zxzvu0+n3Xqmm0BnKbKd0Cl1Jy4vhxVKaKfmX3uz6+zo8+zGGxZKy8HcPIS/c8n8ALkMIeDL//r/8VpWod7fskacbBfovV1bvcuH6dQb/H/t4u7XabRr1Jq93i3Xff49133rfec57OMK5aCksqDYRhulnnt3/1Gzz96CXKoU11qDQl8gxGhfT7EoRPODuFRtPpttnb75NmTkk0R2iLQRwtCzH2dfyEGkd9DpUBjiFgo0kecYWKUkZwxOJ8N9vYIYp8QLO5uc6g22Ll2AIPPHCSUsknTnsolZCYITIy1CZKLIhpPlN+hubla9xYW2fg+A1JqlAZBL7PwsI8vV6H2dkZMNqVCEuX6rIVI3n6RKmRMFUQhIRBiAHOPXiWZz75GTy/TGoEnVaX7c1tXn7lRdJkSOtgh263Q7VcQSC4e+cOd27f5c033qTf62OA6ckJFudmECbFZBJtPJTQluejNXGSEccpwzhhEKe0Oj129g5Y29hmp9UlUeAHISLNiqmQYiRSOe4/HHKCRhM4euz+mTCMK8U8eXqFL37pC7z88gt85zvfottt4ZT7gFHKM4foPU/SnKiTxn22t9ZI4iG99h6+MDz56INMVKtkwyEbW5tcv3ObazdvM4jteyVKMUwShknq8uOZKyTwmZmZJkliHn3sET748KXivXOEEXIoWYz1N5JO78Q2PJyenuLf/D/+b5TKVYz0GcYZezt7XL78AcPhgG7ngHZrD7RmotFkZ2eHGzdu8N577xOEgetKbE2hh0EiCaVkol7hq194jl/92pdYnG1S8sFDI0jIDDRLHsHSPAbY3dtjdX2dWBmEDOw8ejHGpIziZjs3nW4HYwyttmR/32NrZ5uDbp/jK8eIh32GacLm3gGPPfk4C+UKUtp+gFooG4ULewhV6zXKtSpTM9OcOHOKza0d7t7Z5MaN29xdXWV7Z4d2u03ipB8ajTq+L9naXKfb2sfTGWeOL7I4/xDVcki332Z1c5PpmQY/e/VtNnZbrp1NfpA45WCXXouiCN/zCYLAkXCNq47MikawWmUEQVAgx9aBkPhBgO/5aCP47Gef45u//lsI6ZEpaB20WVtb5+q1KygVs7uzSa/Xo16tMhgMuX71GtduXCcsRa4y1I2ucxoEFnH1jWCiWuM3vv4VvvKZT9CoRgTC4AuFNhlxpvBRTDfLPHDyGFs7W2zv7ZCkQ4wQ+H6An5lCYTh/n1Hl5NG9laPf+YHK2HNHzvxRO3zPfmb0XtpoSlGFmekp9vd2Wb27SrNaJjMJOwdblIMQ3/dc0UpeUZiQxCl9FaOkxg8lswtTfOazn2CvG3N7fQfP85mcnLb8y3qN4fBeteFROse1dDEalafOhG0u+sQTT/Dlr/0KwvfRArr9Ptsbu7z55puoNKF9sMv+7jZZklIpldnf2WN7a4cPLn9Aljl5CjSNWpVf/eoX+cqnnmV+skElCggDiefZXptJlpGqjGGcMBwqkljhC8HC/Bxvvv8evTQvpnGOpBnttzGGhEOBcnual6NbG6q0tkFGMQ/3BwDsRFkOGmL0+KE1YZwm0qVLLMzP0+922N7Z5GB/h+mpBhcuPM5ko0IS91GmihceY2ZhmsmZKd6/cpV2u2slOZQmSZ0MTJZhlCJTgnKpwszUHL1e975rMb8+fm+vXIo699aFR15iPBIHg8AL8P0QpQzXrl/ng8vXGCQZsfOSK+Uqk81pji+vMLEwj04zNtY22FjfsGqwCDzfpzI1zf5BG2tSTOGISDTTEw2+8eUv8tlPPE2zEuF79v0zqRFaklUiyiWPtJ9hEMxON1k+Ns/+wXWSLEMLMYq+NUUH7uIodX7J4XV/eBOMOzq5lo/v+4c27Hj+NFdWVUrb1hlSIjwolUPm5meo18vgaZqTNYJQcvnqhxidgMkACzMjbN4zbJRYmqgye2qROFPESUI8tKWcd25tcPvWOseWl3jn3be4cvkyU8+ccdpGuoAdwzBg1DphlJ4L/BDfD+n1B7z40mvs7HVJs4zMSIKwxGR9gpnpGZqNGoE0DLpdbt1d5eCghda2km9qZoYwCEkZUIpCyyeKE1ItyYTVeUkyyw1Ls4zhMCGOM3r9IfvtLmub23QHMaVKjVIQ0okTVLcDeCDAlx5Km3sqE0YzVezqQ45n7hDlc2fGFJmjKOTJJ5/i3ffe46/+8i/Z398fzTWHK6pAID2oVCOmp5sImdFqbSE9QaUWUgk8kqzH7kEXTxhqkyUuTZ7j4iPnAIEWAiN8Mm2Ik5Q4ThnECbs7B1y+fJOlJQvd/uSnPykyYsbJIVgI3i7QNE1H94Ud+8APiOOUK1eucO3mKnGSkGoQnk+j1mSiMcnC/ByNWgmJ4urVq6ytrhMnSSEc2WjUOTAUIgfGoYHNWoWvfOE5fv0bX2Vuuk4oDRLl0qW2WlBntiJmYbrJM088wtr6BtfurONFJbeXHbHSBvdWm8cohFuGqVYkWUqrP6AziOnHCQtzM4RRmb29A954/U0uKUO1VicsRVRKZUv8BuI0oVCL96BUK3OstMzs/AIPXjjP9s4Oq6urXL16ldXVdVSm8aTgoHVAu7VPveTz9OMPszQ/jc6GDPptGGZUqgEPnjtNuVJibXuXWGmSVBX2L1MaIT02Nnap16dAaL7//e+zubmJMacwRjshSulU0+VIIsJVDglhe3chJHu7+7z0yht0e0PSLAPhUS5XmWhMsLS0RLVSwZeK69fb3Lx+k15/YA8pz0okREHgmpSOEYuxRr9WDvj6l57j659/jul6mVDaA1MrRapTjM5QaYpRCbWKx4mVBW7eucNBu41WunD8Ve785Xvr6EHI4QBxfKeODtFc4sQ+nlcNjYLO/JAec46EFdKbmJwkUylxnFGplpmcnmRzZ5P9tl1/Kktt5bGx6vZKKxegeuT8I+lLpqYn+PKXP8eV66tcv7nGyvFjbG5u8M477zI/F9kgX9iWKLktybIMKT2XkhtVmwoh6fX6vPzSS3QGMb1hH4VG+gH16gRzs/PMTU9SDmeI+2021tbZ37fCrUZCPazRrNcZdPuUfI8vfe5TfOkzz7IyN0058IkC23LCGE2cKtI0JU0y4jih0+7RavfZb/dIswHDdEirH+N7PkbhgiTAFqgVZGXGxlobJyNijHtirtNl96o+MsdHnRubtpSWfzM2z/lbSGGpBWkSs7p6i0rFUlCisk8QeezsbLC9nWBMhtG2Kbn0JWfPn+TMgyfJsszyKJFkmSZJMpIk42CvxeXLN8i0pNls8NJLL5J8RJk7/JKNTUUuPuX0YXIyrK0Ssrl8z7Pwn+0ZpHnggQcs8iNtrJcmKat3N7hx8zqD7oDNtfWiOkM7LpGHT5amBVScj540htDz+PQzT/PNr36ZuakJApHheVYB1xOCLBUEvqAU+vQHfeeQCWYmm0ghSdKsKCHMT5Y8QhothMMLo2gweCTVNf5zbswOwYFjCp92E9oUShhFTE1PsbAwy+zsFJNTE0SR7Vgv0QyTHoM4w3MKokgbZRQl9Z5tbSCkTzkIqNVKIHwEARONaVZWTvLAA2d4443X3YLGclukJckGgVWeVirFmBQc/Ol5HqWghOcHZJ0+ExMTHFs5Ralcw3ge8TBlb3uXjc0N1tdS9ra32NvdpdPrFfwQpS0qqFWG1b2xBqFTDoh9V09gBFnmqgK0YhjHDAZD9g/abGxs0+50CaKQsFqzmzweEA8HSD9E5j21hOD+XQoZRb35RBRQ/NHoxT4lU4pmc4J+b8if/vF/ZG1tnTQ1mLx1shgtwyAQVGtV5mZnOXlymempCYLQBwlKW62aYWYrNQLhavtcPynPt001PScKWg0ipKhhsLofnaWEam2Cxx97mud/+gKdzkGRGhXSH7UbYdRKIycaSmHFPYMwoj/I8HyPixcuEJZK4NCEbqfH6p01rrQPGHQ7bG2u0zpoMXQ6HAJc9/Yh+cFj/SyDLwyfeuYJfuNXv8HCdINQKjxp3xcjyIwmU5okTYiTlCwzVCOPMyePc+POKt12myxXM3V7AmcoTT5Pbl8poFQqc2zlBNOzs5SrVWv0pKHVavHiCy/SHwxpNBs8+OCDLC0tEUVRoT+FwHFMADzCKCCKyjSadY4dW2Bl5Rhra+skccbu7h6t1gFCwPzMIoO4y+UbO+h0iMqGaG31scKSz8nTyxw/cwK/VEJ6VhbR6oZ5aCN46+0PmV9YQUpNu7NPmiaO2OwjpE1HBkFo5Rq01cXK0ZAgCAjDMhhJvz9gaWmJyakZd/B6DIYJ2xtb3Lp1kywdsLO9webGFoNhWojEekhMLqo67py4OQylx+c/9Qz//De+yexEndBThJ6Pj7EHiUpROiXJhiRpjFIxUeRRr1dQynHzcuUOV/AySqUc2YJj9jJ3zvPicnFESC/X7Cp4kxamwEUvLm1nbWEpipiZnubU6RPU6hXKUUAYhPgS2t0OBnvoGT1SCy5QUQzCedk5Cu57HseWF6g0JqlPTPHEk8/y2quvkmUxmLBAjOWRYFepUWBrOXgBAo80yZiZneX05BRIgRKGNFN02312d/fZ39mic7DH1sY6vV6frKidsETgJE4QBqYbNT77zBMcm5ukXgkJfUnglLCTTBVVVXGc0O8PaLXb7O0fsLmzz531OygUaWYdYNtCQru04+Fzq9iKYjy4yyE6a2LtMOoiaLFn5kjZP3+9XI08T+mOVzn7vkejVmNmZobpmTqer0mzPn5g10m32wKTIqTC94SVDJHCoaEQSEkQWP6U77iPQnhgPLJji1SqNSanFwgjSau9ew9iN379UoRnz/OQnlfkYXMIUylFmmYEfoQfRgjP5+6N27zx5jukmWGYZAyShDhJLAQZJwgEWlnjkVdy5UdZmiXs7u+isqR4b4ltAHfp/Dl+65u/yvLcHNVQIrFd0vN8ehqktoWG5xF5kizOiPsxg97QwpRKWdKlHgGto9LlsbXACM7NF/nR8sf8MtiD1cqV2x5a+YcxjjzmCajWSszOTXN8ZZnZuWlKpbDwwI1JbAdrbDoRo22HZ0zR8kkagdT5oaTsfUuDMMKKBXqSpaU5vvH1J/GDiJs3H2F7Zx3pDHDumPq+qzBxt6mUwmgIwzJRqUqWwQfvX+WDK9fRWtIfxgycQGTsOkFLKETWyOFUAK3Y29uzXaKNYTgY0m53aIWSyLepQFsR4FR4VUa3P2R9c4tbt+9y+/Yq/TSlMTWDX6rQ7m4zGHTte2HnW+mRku9R32cEs48/ZkvURw6Tmzv3vRDQOujw4x/9hIODA5TKXC5Zoo1FB8pRRLNZ59jKAvOLcxb5CqRFO0yCShXaWLFAz720EBblkSYv77b1khbJc1GjyPBEAPiUSj6/+Zvf5OSJM2xu3mUYt3n7nT0XcFg+SBAEo2oKpyKrtcL3I0qlCsb43Lp1jTfeeI8sgzhNGcYxaaaI48SW0AonvnhUB8dAvx8zHOZVWXZsfCG4cO4M/+K3f53l+WlCoYl8ifTtwZKmGWk2JMkyBsMh/f6QTm/A7n4bTwqiIGS31UO5MRDCt06946jlnqXBEAUBjXqdY8eOceHBc0zUy3holEMJlcnY2Njm5u3bxEnMe+99wNNPP8Xp06ep1+s23SGEbVuSI3xFGwIoVwKOLc8yNV0ny6wi+eb6OslwSOAZ1rfXMMpWkWJskFEEe3l6y7jxEQI/9Kw2FJKnn36Mx594hu2tHZ584iE2NtYREjzfBoxhGCKEhyc1wjNkKnNBnkcpCAnDEnu7HV577S32Wz2UtvsnzTIypRgOEsBqOWmVC0eOlrnRmt3dffuabnNLG4vjCTi5ssBv//rXWVqYJMIqTXvCII1GaolKLJoYx0M6nS77B11aBwfE8XCkVyXy0m9hydp53Gis/Ss4TUf35pjfW5hHgSNBK4oyhbEya+HG23ajrzI3P8vS0gJTk5N4vodB2/SpUWRGo1NrOz1XJiVcSjK3TQ74sEU40p1ljr/SaFT5jV//J5y/+BBJ3OPO3ZuorIX0pSWJ546PyRt7jmyNtakR/X7K2+98wPrGHpmBwXBIHA9dMKAdF8W2wRmlmUYOQqfTdSKpcP7sGU4fP0a9FBAFksCXjq6gSVPlUI+E3mBAu9PloN1hfXubm3fX2W+3LTKlNQqFHFOHtsGUtXvFujl0xo2yOLmzI4SwJss147XVgnZ/KXNvgYkVY3ScViGYnGywvLzE8ePHqLryfI2ywXeu5mwUmAwpDNrz8Nx5lwr7mBRe0VDZduT1kJ6PFCHC9zl/8QxPPfMp1lZXefLph7lx+zpx/F9K5FBQLBSlFFqNUJ/MeaJSehghOOi0+dmrb3D1+i1GwsTiXs7F+EE0itVtPjkZuo1hnyc8iKKAzz/3GU4dP04l9AjFqN8UrpLAlymeg5B9I1BxwsHeAdsbO8TDxEYEWhX5T4RNQx2F6PItc0iSOx+L8UNDjCop8gh2vAJAGE1zoszKygLHTywz0Zy2DQuFwpDZ6E/nxt8a3LxHmBQgPIEn8soekM4Blb7tZxME9mCUwjYwrTeqHD++yMbGBtPTNSqV0H4WYVy3ZE2ad7A22ilOK5DSIj4aNjZ3eO21t9na2bNIDmPT5MoktUPLbHpvNGYGSJzoYYhgMIw5OOgwUQ7JAttMVWlQ2pCkCYNkyN5Bm1t373L1+k32ewPCag2kx/7BAWtrawyGQ3JtijyK/HlXAZMb49J9YHWDnUUe93WFbfkxHAyIh0NyHR7plGorpYClpQUeOHOa2elJgkhipMLolCzNyFLlFJKV7eOEQUtJ6HkYT2J865wba6NBaDt/MidPYhvMIggqPqdPHUPKjNnZOktLU7z9jh3jIAjAUKS6cPOmje0h5Pk+SJ9ue8hrr77Fjeu3SdVhjz7vazdSqB5/2JHhlRszRzhVRlCLAn7ly1/g9MoSkWeIPI/Ql/lSsOiHMagsIRnGtFtttnb22drvsL29W7R4UGLMITGicCDyNEcYhcwvLHDy+AnOnD7NRL1OGIBQKb1+nzRVbK7v8M6777JzsE+SJty9u8rNmzd56KGHeOihSywvH6PZbOKHge09NP4ZhQKZEkQ2as0yg8EnHVbY3xsSJ0NSZQs5pLA2ByNcmwdX8YdGmgxfCFdxh6vkgoW5eU4szzPoHnB8eZ4w9DFG4fuWK5NmKUZbLSOMcsRv46rzQuI45b33PuTDD64yiDNX5s5otj5i2ecjqLUhdXIC+djaxsmCyJN8/auf54HTK0SBIBBWM0u4XnQ6S8i0IVWKNMnod/vsbu+ytrrJ1tY2cZKSKo0f5AGbBEeQNWMoiNLKCr/aBTfaj2asqUSO6kjbCDpPKdnedYpchD+KfObnZzh79gEWFuYoV6KRkKy2Qax2ncuzLHWVhArfk1b53PMLfR4tnNPjjaqPhPseYTWXHjhzgiiAmekac7OTrK+3nM210adVwbfzllMZpJQEXgmlJbdurfH22+/T6Q0ZbT0rV5BzKyyKlU/liBohhLDSLEIRCsHxlWPUyhG+cw6zzCK8aarJkpQ0SSxPcjjgoNVia2ebu+sbHHQ6CFehJrTrSu/ZMn5htB1rz1VwjZmAcQdI6/zsc46PllYywnEAjRR4xskS6HG+lg2EtbRrbnpykrNnz3B85RheYB0eQ2zT3VqT6ZQkHVreDprAlwSeb9Wepe/2m7D7QBoCz7dK/6HvqiItoq21ZuHYLLNzDTa3bjM/3/wvy/mJwqiIOmGU/8wHLQwjgiAiTlLeeutdPrx8E9fSilEsPnJ0MCODO1omo+/ykvDiZ2BycpInH32Uaikk8sDTVmcF6aN0hlY4rSF72KSZotXusrq+yer6BslwgFapU6s2Nqz4iGu8bO9oqfvRzy5dZFccK+6QjgKfleVjPPb4RWZnm2iTkWWGLI0xKLS2i9i41AWY/CTEw8MIi2spbQmM0smAG4cwGQdNSmkXifQkM9OTBIGg3d4jTjv4gW0VYHtAediWCzlPhAK2DYIIKT3a7R4/feEVtnf2D22Oo5NknR5dRJ95aHFIKcnt9Di1fB4TeXjCoLT9l6qU7rDPQafNXqvNfruDEj5xqlhf32J1c4vd/T0b4Xm+bS3xc+DM0UpxdjePjAuHya7B8bkTxYFsn2sdREAYJicbXLhwjqXFeaIwsCRbo8iSBK0SyytQ9pW1MxrGGPA822xXYylbVrzUNXcVIDRaSKTWGGmdLE8KGs0ajUaJ9fVNBsMWUckGG6VSyaJI2jWaNDYa0s7ChkGIHwTEScbrb7zLjZt3sYUZo/DbLpUjXY3GovN7R9Xdq4H52TkunDtLgCbyPSLPRf7GOmAmV7lVGXE85KB1wObWFus7B9y8tUZ/MHSomBirwsgDH2tPoqjE4tICDz10iYW5Oeq1OqXApxz5RIGk2+tz5+4q7777Ltu7OyTatlTRWrOxscn+/gFXr17l/PlzXLp0iaXlYzQaDYLApstGVUauSa8c4QFpNqTTbTkuh/1sgec79M9VBUpp958nkIFEBra0Vnq2MtJDMjc7hecbur09SmVbNl0pVwjDEGMEvueDlyvhW2mJMIwIgzJGw53ba7z8yhv0hwkF0/HQes8j9pFXNBJdHFvrBSRkcqiKZqPOYw+dpxyAn3cmH5t4bUzRcypNM3q9Abv7+9xdW6fT7ZFmyvaBcylWzxMI46EydVhvLEdExg7F3JYe4kMaY/t2aYPwrCM2Sr1YUchHHr3Igw+ept6oI4xC64xM5zy3zCHP1hHKssRWZmqDEIFVTDca6egCHiCMsr/XyvaPw5aMS0/gRRGTUw163S79wQG+b4p0Wf4Z8lTQeIrWcn9gd3ePl195jW5vwHgvsryPpMj3k3BBbv6aR3edNvi+JBI+Kk7IfIHUwrWMMGhlrITLcMhgMKTV6rCzu8fNO3fZ2NpBewEEAYkjO1t+qQ2U0yxDC9uDz55RIzrH+JmW64YVlXb2tEIbkNogVY7uSaRTThFCuLWoiaKAB86e5OFLF6jXaiidWCfHZNZBFYJUZWRpQpolBQotRWh7hAqbDtcYxzUWGFeRa4SP0AqjDL7vWmRIzdR0Aykz2u1tgmhco+je62M7P2EYFIMj3cY05A0hfaKojFaCGzdu8fwLbzAcpmOOjx3Ke6/DrhFHviv8JbfgVpaWmGo2MFlqk1XGdnA2mSHNLPkpTRVppklTQ3eYsLm7z8bWDt1e3/IkjHZ5euEikNHEH7oz91nHUZ6jbPfxFIvx8t4k9rV8X3Lh4gN84pnHqdXLJOnApRMytElRKiXLXC+0QmEZhJFI37P3KA0qM2iV4nseni/JPEt6E54kCFJMGGB0hO/ZXmC9TofW/j6bGxtMT0xQq1YphRGlMHT91CwEjmvIK4SF4wOvxHCoePutd3n33Q/tQX54NsbGzG3c+y6wfMLc+vADev0hvUEJozx8adNV2ghSnZEqwyDJ6MUxw9RqOqTtHu1+TGcwsGPi2XoibbA6UmPy6jl5kTHjIvK5ys+OI06QYKR5UZTbjnG1pBQsLy/xzFOPMjXVIM1SMJlVG3WGNk1sxGI5GbJIzSpj4e2hSp0BtpGjdJ2npe/mMQwsByT07fM8SZokdNsddne2qVYiFhfn8KRH6Ae2nxPSFR2MqmusWnAZozzu3LnDy6+8zjBJ3fiPJmikj/Tzncf7XdOTk9RKJUyW4EURAln060lUxmAwcJ3GM/rDIa1ul9XNdW6vbdMZxI6IbFMbWtqeYnl5qjaWjzY1Pc3xleNMT81QKlUIwoioZHsWpfGQtbUt3nzrXXZ2dmxQIsbthqGfDbl14zY7W9vcvnmHx594lIuXLjI9M0MUVSwnw1MInaB1Rpr0GQ4GdDsdWge79LttO6a+TxD5IA1SSVsaLgFP4htpDzbjXBPPletrhTKawaDPwd4urdY+i0tzRFFIGPiFfhYIy0Vyd+37AeVSDaM99vc6PP/8y+zs7COKuTMuVeGcTW04GpGMh5RHL2s27aF1bGGOqUYNqRTSs1G7VrrgKg6GCUmakcQJ/V6fvYMWt+9usLWzzyBJybQC4ZGlGb5n+WtgkWhjdF6DXEiHaLfPGHfGxi6ttU2leCC0RpnMOpjSMDMzyZNPPcEDZ08UlU1ap2Q6tRV+zoZrlfdMszwvi0hptM6IY43WsUXOXZWd73n40sP3BCrzbZsXh2wI47G3s83O7i4CTaNRczyskCROi21jm0N7zm22DNV2q8dPf/ISt++suwbUwjmnYxVwZmwsxL2OT8GREvY9dJYx6A3pGUUW2v2WaVslO0wSur0Bu602W9v73Lq9xtrGNnGmkKFHv9+lP4zRDp2s1+qUK2V29/asZpmUUEgsjGzDiMDsAn9jyd6CUSosL4LwjOf4el4hkis9y4d89PGHOfPACcJAkiRDi8qZDGE0RmfESUqSpVZ/SFoHJt9HWWIdnoEaWCzA8Rw9zyP2pE2jhz5BKSCKDIEnEMJjb3uLeqVCp73P7MxU4bTe7/qlFJ61lmRZZnU1hI/n+4VKsNGwened73//efb22qNJdV9zsqlwfAP72OjAOhp6insMt+UDqHhIOpQkoUS6KEFpWzo8SGKSzDZA7ccp+60ut1c32W93SZUjihUOS66zc/8utuOOT3HQGw45QHZcHJQ4JgIVBD6PPPIQzzz9ENVKgNJDtE7tvaoMpVPbvVbZjWyzZqaomFFaF+XcaWLTK77vWWMahk5vQ5D6PioLUEoThQLtQ7fbZW1tlY31dR5++CJRGJEjbVppdOY0IlwPI+u8hiRxxgfvX+Onz79s04PFlIycGWuAc8bjfRbJGLAHFBUR7U6HVuiRlXybu5bWu090SmfQd9LsB/SGCe3ekH6akWjw/MA2zPMgc3NctNURllyvHPclf2NRGJ7xtePWsItID1+HIx/f9zh18jhPPvEQU1M1O2+k1ukT2s1PSqYyVKYQQrt0sAcaa6SzjDRJ0Zlxzo+trgvC0KprB77tZaZSlA7BSJQU7GcH7OzscOXDyywdW2Rnb8+uQ5WnJpyKuC9sTxwp8KRPlsH66gbf/e5PONhvFyORO6DClaBqrY9us48+OcceCAKfNE3p9fqEHqQCkiS1a1BphnHKME7pDRJa3R6bO7vcXl9nr9MnMwFJlo6ps5qC72NRGMnk1BRLS8eYnp4hikpEpTLlSpVarULc7/OzV1/n5ZdfZWf7gCyzWJF9vUOYBxpDrzfg5s1bTE42WTq2SCmKSOLEOvghGIYM4z69Xo92u83uzi69ThfPB6NFgc4qnWLNlMHzx2T5fYnnC7SyLSoEEqFt9L+/v8/BQYc0yTh39jxRGBUpQZ0pjDa2m7vv44eBFdc0PgcHHX7wg+e5dvV2kVooiH7G2DSFsPo8P2/+ciR4/CEb5wg8BMkwpd/ro9PAVkwqhTK2eqk/GBIPE4bDhFanx+rGNmtbe3SHGXGaubYWts2QwvEFXepWS0OuIZanlLVx0ff90A13X8V+FNKmyzDMzc/yuc99imMriwiRkSpnJ1Vi953OikbYVqTPnRRCF7zL4XDIYGi5iZ7vEYUhpaiECjyUBOVLtA7cOSSLYLDVavPmG2+ysDBHs9ksHMNiPItgyZ55yki6nQGvvfou779/nTTNe/iNiQI6zpgZQ77uA7MW82fTUZqea/5KKvA9SJMYEGTaMIwz2p3e/7e99+6S67iyPX8R16V35QFUwXs6kZRvqd97PTOfYOazdr/pfuqlVkt6kkhRtKIAAigAZVC+0l4bEfNHxM1MOIqUNDPrLdUhsQqVqMzKvOdGxDH77M3+0QmPHj/lydYOSVqgpWQ4GHPctxO61VqFZrPN8uIySimG4zFpnk4DmVlt4QXcjquGl5mjcU4t02FLqmow0mEihT1P6s0m77//LpevXKBQCfEkR7v2bpFnZFlCnmdW7FQrwjDC92y7UzueuXEyplDKkht70vqu4ljtAw/PEyjtE2J9p30JRhFPEr66/4Ai15w7v/Y8jOUF+wtG3e0HLzk1POnZci2WR2F3d4+f/ewXPNs5mhVr3CUtM1CLWzCWaOwb/Mr5t2+BaobRsE/DLyAKbMagNblSFFqTFYo4TRlOJhycnPB4e5e9wxMGk4xxkpHmJdDM9UC/lpcCWzIWjrQxCJzy9Ozn7GFiW1Ba2ApEJaxw48Y13nv3TaJIUqgEVeSuvGfLtHa8VbuWwbQ4bBebtkDIPC/QhabIc7RWSPceKpUKXmDxFmEYkmch8TjBkwnD4Zgf/ODHHB2c4nshnU6PSqWKMenzVSrsoRn4AcZIigzu39vk33/2K4aDCWXVYBb84PrktjoxLZeL2bV42SwQ9+T0hON+n6qAE3LC0G7+GsM4jemPB2ztHXDUPyVDUwg7MWap0ANq1SqNVoNCK/YPLWuu51nEvzbGab+Yl97HVD3bfZVSogobRM5vasZY3TohPILA48L5Vd79zpu0O1UKlU7bOUYVlEJ75QZX4pBQ5WGpKPKCrMiJx4ltCWhtQa6+/RMEPmElIqqGRKFlbR6HOcPBhKtXr5OliniS0W0vkudlCOpI8YSy7RMREvgRBigKw8H+Ef/2b79gZ3vfTf7MfCdgeu+kaTrLML+pGTuUMBnHDKWiSGOkFBRaWT8aSLOMwWjM0XGfnd0DHj3dZjBJiTNFnGVkRT69XvZ3lzeOzdbr9TqdTptGo0EURTSbTTqdDpPxiI8//oTffvAh+4eHNvMtM+fp3TzD3JXZ/6VLF/nhj37AhfPn7LrVmiSdkKQFWTFiMhkxHA45Pj5mPB5PA2YjrZhpMo7JHZ7LGOOmxSI7eeJ7FvellGN+FqAz4iTlxrU3efhwk8XFZTYuXMb37WSeEJ5rE+KGDkKkF6A1DAYTfvmfH/DJp/dIXauiXH+uk4zv2+16/iD+JmbH0u0rqlwxGAxpRx6JtBfQZvd230qzzAFnR2zt7LH5dJfTcUyc5SR5jjZ6KkVhq63aAYElCI2RlqnaLo2ylWzxJUpZKoMSDF0eqbZihON80nQXevyXf/wR59aX0TqlUClGK7TSFCpHGRv4KAcYLvfyUgFAKdu2S7OcNJ6QpDZg8D2PWrVm9dQk+IHvNNZCkkgx7CcsLK1htE//dMKdOyvUazuza+immMp7VwgPYwRJnPGHP3zBBx9+RpoWlLzIz/kAK8mTZ/lrJ+NeWHAYrRkNhwyGY/LYYIwVJLaYKMgLw2AUc3Q6YO/giDjLMUKSZDn94YgkzTDC7pH1WoNOd4Eg9JGBz+aTx8RpNuMmKqtzYhYACVGC9AMEgiIrpsmTneq2ygJaK9eKEoT1iDtv3GTj4jkwCp3nKJXZdrey2NY8yy3Vi8N35UWB0bZdVmQ5QkMSpyRp6u51QRiFTIKYMAwJIzsS7/s+cuIxDjLyVKMKzd3b7/DVgwfUay06LTcl+Rr79tNenpjO6dsLG+F5AWmW83TrGT//+X+y+XibwrycnQiXXc+Ezl7Ahrz08/MbpF1IUkCaJAyHQyoiJwlsea5QZc8Z0qxgOJnw7PiYPz14xIPNpwwmCXFakOSaQlkApwW5OjV2xLQdVk7PUIJ4pR0vrFSrVKsV+qenWCS7cIdiKeqW2/6klKysrvHO23eo1z2MSimKjKJILVCuKMBopNukpRZooZ3ooA0TtbI4oHgyIc8KULO+bCpgPBy4yokFUVaqVUCw9fQZ1WqLf/pvbe7d+4ovv/ySn/7kp9SqdbTOEZ5nA0gvxBMengyReMRpxmeff8nPf/4rDo8GjsKfOe+UFS41rdh9U1MG4iRjMBix1GwyHvXROrcBCIZUpYziMf3hKXiGqBIwSl1PX9j7LQwrNOpN0jzDkycoYXmgLNWCeqm8OcUVSEvN7gXBNIuxLNEaLSwtPFi5AqPtmHCr1eT27Zt0ug274RQ28FRKYZR2AFTnDyPKyjY2G7LTF2mcksQpaZbaDFXNid0CfuARVSv4YUgljAiDiOPjIYcHJ9y8+RbPnh3x+Rf3uHX7Lmtr6/azCO3Uk630gfQihAjIs4KvHjzm5//xa54+eUahXmxVlsK5YgqU/iaBj2Fad7B3pdJkSUYWCvI0ttUvo6frbpKknA5GPN3Z5cNPPmX/5IS0gHFaMIozC/6U3nS9zQgOBZUoZKHbpdNuU6vViKKISqWCMYavvnrAZ5//kXGcIvwQIQpM7nBGwrGZC1vZEtIgA8m161f4yU9/wOJSGykLG7hI37ZzJjFpMmEyHjHonzKZTBxNgOdGzxVFoUiSzFYP4tgy1vtWgkFKQRSFtn0SeEjho5Vkc3OLc+fW+emPfR4+eMKjzS3ee++7tjom7KSY53u2NR2EIDzy3HB4dMyvf/UBH3/8RzJ3eM6tOFe1Y+6g/+Y2n6RJI6hXqmRJxniUILAiqqpQDsSrSbKcw5MTHj19yu8//SNb+ycM04JxllJoYyUdpKv0A9L3qVQtAHkyicmyzFb0jAv2PFsZC4OALEvJ0xjf90izdLoWcPgSYaDTbvPDH36f1bVlMAWqyFAqc5geF/C4sq+cfrayrWcD9KJQZGlOllr+m8IRiGZAGscWoO6XLegA3wvo9x9zcDDg//y/bnN4eMyDB4+4e/cuS4srbu2JadeipDTQWjAex3zw4cf85refMJ6kc76zgZwNktzaK4o/i1Wc9xlAlueMJwmFG64AY+EQRpCkBaM44XQw4HQ4JFWKVCn6ozHjOLHj89IgVE6mCoJKRL1eZckT7Ow9Y5KmKFw3A0dXIZjyFXlurbZaTVSh6J/2qdZqjCdW47DkpjLuOWEQcPvOda5dv4InNSpPMTpHq8LBO2baX0pppCfxsXgxhaVmyNKMPElJEjtVrJTdl+NROuWCqtYCoprv/BiiCvjq/mNu3ryNziX3/vgQIQXvfud7ePJv2Pay4C8fKa3wHtInjjMePnzCf/ziP9nefua4UV6o6s15tFzEnlcSROmvLbvPAzTLCZkkTZnEEMcF2pTZuLTZS55zdHLKvUdP+fKrhxz3R6S5smJ82qnyeJ5ryZaSFO77qV7STHE2DKtUKhUajTqVaoXt7S0G/RO0KkhSYwUuwfbzjaFSqfD227dYWW6htYt8C6tQrlzwUJamp2Rv7vnGgM4LijSlyDLyLCVLsmnZuMQTeZ6HxLebdZZzMp6gjcQoSZZpPvzwUx4/fsInn3zKP//zv7K9vcPaOTte6AsPQYAnQ4pMMxqk/OGTT/nVr3/DoD92Pd05/73gu+n7mPv+9b6zr5MVFgeihQDPikJqMau4TOIxCGg0GxRK0B+nIPPpBAgI0jQjzmJbeXOAcO36/GFkKyBB8ILule8TRBVCJ/UwGY85PT5CFTnj8dgWMoXD/miDlCFXLm2wsXEO39euhG1s9WbKoizACISybc4SVKkdUDRNMpu5JKnlnMHSQJT8M0IIkCFeoTDGijZKkZDECiECNh895eGDLf7w0adI6XH37l3AWHCmsNMNUkYUSjIYxDx+ssW//tvPOTo4RqlZVc/aXNPSmKnwbsnB8ToejFmF0JYMjJAU2hAnKWPPYHRiA2FjUBgKbRhPEvYOj7l3f5Nn+0eM8pxhnBNnCo03DaSFq/54QuIFPmEUsbi4yMWLG6yvr9NsNqcCoKenp+w+e0a716XZabO3t0d/eEqSJgwGAwcwt6RsCIMnobPQ5bs/+A7tdoU4PsGYAD/oUK3VqNclWnvkyptr385a10WuSNPEjpSnmRtTttQcdu0WCCmoVWtEYWj3DSNRhSSNC05Phvzud3/giz/eY2dnm8D3ODo6tvum9BH4SBmCkIzGMQeHJ/ziF7/i/v1HZJlCTxsQM9+5fs604lMG+q/z3zx6wIgyhRT4eFTCKuNhwrGxiaRGu8QsI9eaUZyyu7fPvQeP2T04YZQWJLmyAbUQeL7d8z3fSuL4vk+tUadWr9HOc5IkcVVZi0Hzogq9Xo9Wq8nh/h7Pdp6QFxlqZCkLcPu/EBCEAXffusONW9eQPqjciuIK13YRDlM0nbx1xEZm2v7SaGVQWYFyQQ/Gjt3bKTlj24fGtueKXJEmBVrHJImt+j7desbTrQP++Mf7hMG/0l1YmE5kToG/xqdQgsFgwoe//5jf//5jkjh7eb90CVEZ4JVrz/P8WfXuNeuv9KFywOaCAmGsBqFv3z6ZVkzShJNBn0RljNOE4SQmTjNyp2NnX8sKNdfqVdqdDo1WkwcPHjAcjdAY/ErF7pOhZfUPhEclCKhWKgRhwPLyIkkc8+jRQ4zRpFliQ3KjnQ+s/1bXFnnjrdsEkbRYyDy2QY+y7X+lFUJ4hEEAmKkQeJZltsLq9sc0TkmT1FYQ1eyMsTGDxPMMRmQYLVx3IKBZbzIaxPzyl7/h88++5KR/yqX1i39bkkPP8+1opLHgzuOTPp98+iUffPARJ6d9rPrA3PJ7TVDjOeBnURRTkqRXW7kN2EpLGPr4vsc4TQg9QGVoY3uKli/GkGQZzw6Oebxj212jRDFOFKnjp6hUq7TabXq9HouLi5w7d46FhUVanTbdbpdut0uz2XQHaEitWqfdblkCQk+ytb3FvT/9ia2tJ+zu7rC9vc3e3h5HRwck6ZA7d69y7coGYWTIMzu2aFCUDM1GqdlB4AKwcjywVPCVjjws8Hy0r2YHhgvKygCNcjRSKYqsoNGo0Wovc+/ePR492iTLEn727/+Dnb0jzq+/aUvwRiIISBM7MvyHP3zGp599wWSSoJGUjEuv8l1ZMZjnmXm1iee+GiHIlEJJgQgDPO3CWoeVQkAUhnhBlSS1YEoLn9EUOmMcD4jzCVG1wvLqCtVKlW6vR6vVYXl5ieWVZdrdDp12h3a7PesP+wHNdtuRRwomoxH3799je3uLhw8esre/x87uLocH+0zGQ9rNKleuXqBSEWhVIKUF06ElhVFThlTLb1QCAF+YCBQQhCEgbDZTZAhp8IPIVgvcRiM9H4RnKfezgkqlRqezxNMnW+zsPiPPcz779DO2d7ZBCDwvwMNHehF5ITg9HfHB7z7m40++4OSkb7Gms5U3XTcvVnlKgHQ2VVd/YcXNY96YTbsopRiMR4SyikfuWgwFuVYUru01HI05HU5IFIwSxSQtUEYiPB9fCmq1Gr2FBRZ7C5w7d47VtVVWVldptlqcWzvHwuKCu7d9S/bpSf7p//jfqVSsEvqTx094tPmQw8MDHj9+wsPNTba3tzg5OWQ8GeJ5hjffusHCQgOlJ8QTRVH4CFKSOKJWryMl1CohXq9LOZY9mcTTAFcVVgMqSzOKrJjiEDwpLKfIFGAeOC26HIzP2to5qtUGH374IU+ePiFJYv7933/GcDBAej6eFyAI0cZjPI754o/3+eCDP7Cz88xmxdNW5Rzu4gWflHQHs+r5y2Ze+E5ISeD7hH6AEJAkKSPpqvBGk2djW1FxAdnRyYCj0wGFgUxpC7IX0mpUtTs0212WlxZZXlpiaWmJxeUFFpcWabfa1KpVPM+3h2hUo9dbJKqEGG1I4gkff/QhT54+5ulTKzPybG+Pw4Nn5HnKwkKLt9+5Q63uofIEIwpwFVpK7JCz+bUHLnF0mpK41pTveUgRErgWtwB3eHpocMSqFjxdiSK6nRWe7T7jydMtRqMhn3/+OVGlSlgDT/pWgFcJ0lzz5MkOv/nNhzzafEpRWNzJc1f+uQkL15idAxR/EzPAOI4ZTWIC32LkAqPxXMIXZwmTNGEwHpPmBVmek+WWGgHPJmjS8xHSgoXDKKTRqqOU5v3338cAi8vLLK6sUKvXabWaNOsNIt+2d3udjpN98ciLnE8+/pg/ffklW9tbPHm6xd7eHicndkhACM3tu9fpdGpgCvC0ixEsISGBh1RYDJQQRIFPkaXkWYpxXQ3Ps/Q5nnu/Sik02uriCTtVGkUhlWoA0soA6VQhkCz0FgnCKh999BHP9vYwWvEv//wvZGn62uv7LYMfG+kjIUtz9vf3+fDDz/jkk3skSUJUraF0ZhH7urwB5p79gtOfG8d8rftnG/iFc6usdDvUanUmcYpnFMLY7FkbRaEtz9AkK+gnCcMkJS40KZJqp8WltfNcv36TmzdvcOP6VZaXl6jX63YUNgzBE66sLRF61tedkmFJW/JuNFpcvXqNLEuZTMakccxoPGYyGXJw8IQ/3f8DUUWidQYoEMqWPj07gaBlwVRctNy/HLZMuE2WwMMYD0LfqZ/PMDe+7znQrJXRCJWm3qgh8BgMYg4On5FllgQNFMfHBwwGw+lnUAomkwlf3X/Cr375O3Z39q1aeFSliFNw9OZfZ/Nabq/3nQCHgZJhhXqzhR8GGGGB1SXdvHGfK/IkQvpkuXZTJAZlcqKgxsr5Va5cucLdN9/k6tXr9Lo9Op0O9XqdKIoIKxHCt+yoctqsca0bz8OTllvILC2wtrLKOI7J0pS8KBiNRiTxmMnklF/+8me0GhFCFCCVpRTwrZAnQqK1ZYI22uV0rloo3d8lll/EFxZLleUZIgdjXBUqsI97viXEE0JSr1fRWjIcJpycHNlJxTxDSE2SjtneHiGk7b0rBeNxzPbWIb/+n7/n/r1HGG2oNZqMRzFCu4kb5luWz5vWeo4n6M+bJyXXLl9mYbFHnCXEqcBHg1YUOqdw4+txmjMcj5mkKXGuSLWh0mqxuLjE+sY6l69c4c2332FtbZXFzgK1mq2kBlFIqcMmPYnRZorpKIkFy2rexStXOL++7nTQlAMs98mLmKPjfX75y/9Bt10h8Aw6z8lUPp2qDIKASTymUqkghYcvoduuk+ctjLaaSGhBUdh1Va1ECGPJ8qQUdo+Q4rnJE8upY8nWxqMJh4dHKANBIFFKMp6MKFSB74VIGZLncHh0zEcffcyHH33MeBxTqzUsBYS2PCfW3P37ihZl+dm/mf8E3U6Xi+fWmBwfkRY5SZHjZWbaAtYqt201aUjzwoKENWjPp96qcO38GleuXuPStWusXthgYXGRXrdLu92xsiKRb8f+heeEOO3EoxEBXhBQSsgY1abb/SfSNCFLU8dNc0qWjkizhM8//5hm3ceTBRXfJ/NC0hSHpbPHiZSe01RzZWOD+10Wc4QwaGHwPDC+nIKHy2TSstvbDoHGUG/Y9lU8yTk5OWEc75OmGX7oMYlHHPdPuHjlAuCRF4bhMObTz77kgw8+5rQ/wJMBQRhQJOVe/3qflP76pr7TBk5HAwbjIZXIIy8yC5eQtuI9GIyYJAm5SqdTlNILkMJWySI/Ym3tPFevX+fipUtcu36dC+sXqNVqlkKiUrWBReC7iStvrsNSnnm2clgRgh/+6Me89953yYucySRmMBiQZgnj0Qm///DXZNmIIBSgLImr9m07OC8kpAaDxbJaOXSbQQrPJvpR6Dvgva2Me4FPnmYU5I7bzlbfarUqzWYd6TtpGXykCDg5GXF88Iw0V3iBQOWG3b2dr8XH/QVtL594kvPJJ1/w4Qef8OzZicXQaINUhrBSJRuNsTfCy8HO/JTUN17Awm7kB/v7mCSmHvoMx2OM8ixvgwTQ4NnS/GiScNQfUAiPq3fe5NK1u1y9cYcbN29z4dwFOs0a1WpgOSrm3qNCW62aMmB3X7UudYfUFJMjhLCTI76PaLVZFQJEzoNHkt29rwCNcpNdQtj3KI2gFC8S0rVOhM3EfeNZpWTczVESZwUhvj+rooWhnfQKgsAe6p5HFFZottqcWzvP+sZl7t1/xH/8x6/ZP9innvhoozg6HSOEh1Lw7NkBv/vtJ3zx2T2GwxitBdoogkoVZOHGcf/a4Ifnij9JmrC9s831yxfsBJuydO82urdBte+FaHw836p/N9pLXL55i7tvvM0bb7zB+QvnaTabNOpNgiC0Ly1ctUMYS8CpHYjTmGlgqZSyoPGpfpKgVq0SRREA7XYbgSZJTvnTvY/wpcKoAmE8EMpOFEnAlxjjQ277glJbLimtBUILhLZkg0KWlAn20LQHt/NdJSIIA6TnY4wgCio0Gi16vUWuXbvJeJTwL//9v7O7+wzPt1OAk0lKoSVCRJyeHvPJx3/ko99/wf7xwLVPJb6CIKiQJ5PpdZ+flJy3cu2Vf/9zmagqFNtbWzQDyWA4oOqDZ/QMtC9shWA4nlgdPumxeu4Cb1++xM3bd7lz9y4bGxu0Om2arTa+9K3ch3CkfS/8eqUUQoFjZbHyAMZiBYSwQNVSZbtWq9HtdpCyYDRa4PPPf0sUWDydEbbFYbRyuDxLT5AksQuQ7ZhyFAW0Wg3iSYEnc/d7XKInjB3p9jzL0yPFdA3a+09SrzVZXT3P+XMbPN58zG9+91uGIwnUKYqc7Wd9hLByI199tcmvf/UBT7d3yVWO0Zatt1ZrMBgMZxWD0oev2EOtbMU3MwEMB0N2MVQEjCcTxklMoYQL7ASBJ112b5ikBakyrK1f5DtXrnD15i1u3LrJ4tIK9XaHsF53LTwPX9qraPmDjQt5XNvOsYgox/5ecv5IKe0kXxTRardZWFzEk4okm7C9u0mRDijyFGVyEAI/DKAAUVjsDEhkIfDmWl22auDZQQMKRCBQDh+qtZU78gOLU/KkHTgwRhBWKjRbLXrdRTY2rjCJM/7l//4fPH7yBM+3GJS8rxB4pDlsPtriww8+5f5Xj4jTzK59z1CvV1FKkOh4rqL/Mm1K6b9vGrRqBMfDIafDIU0VMknGlu7Et9xqSVYwmozJdQGeh/ShGtToNZusXljn9p273L19l4uXLtNoNmi129TrdRugOqCiMg62Mb3PzLTLYDBuZN+aFIKoUqEiqjQaTRYXFy23lac4Pd1jZ+shUhQ2qPEluNtUajmDIWBxqlprwii0AU+hKbQmjmNAUAhLVVNSRHhSTgcg7NrzCUKPSqVGt7fI+fMbrK6c41e/+Q0f/eEjjo+PLSN6mjMHyHzJvnXws/30kP/56w/46quHpGluwYZSWrBcnFKr+66XPr2WpS/tt1/j+Jf/bVbxAEOeFwwGQ8bjMWmeIZHoorD8XcJy3uRaM9aKC5ev8t2f/m/cevM9Vs5fplpvU63W7Lino7k3WJDcjPquZOE0z5GGGTFrSU0j+zmUfHl5jTbsbu8ShVWMmkxfwJMlw6/BBAZPKhASYQTKjUFr7VN4VkxQF7bU7kk3Dg4Oee9TqVSmRJNRpUqj3qDbXWJj/QrXr99g7ZzN0rq9No8ePWRz8xE7u3ts7x6TTAp+/+Hn/Pa3H7K3d0yRGwyWKTrNc2Rgp46K4vV90hdpAL7WSh5197OD4ZBJnFCPfECiCjuhZwRoLI7MDyssN3t8/x/+K2+88z7rl6/RW1whiiqWEdvVkKf8JzjYgLHflVgq12632S1OdNA9VhIRlpUpzxOgDU+fbqGVIfADcmUD3RL0px0ZnfDMVAbF+k1PD6SiEKiiwJMeygHafc/HM5YMLowiwigkCH2CICIIqyx0l1lfv8TVK9e4desWhSpYWu7w+eefsbn5iKdPt3n27JCj05QH93f4xX/8J0+ebJOkVlBTelbtO8sKojBCCoH6c255wW9f58dy9SVpwtHhIcPxmEogUXmMERqBLVUnmeVqqrXb/OStd3nj/fc5f+UanYVFGo2WCyTm2M8d/sKUByWzQ8EYPW1zU2JWphNi7nnCSqOUGl6e5/PVV/dRWUZYrSFFgRYekpnfjbFVuzzTU/yGcurQhSu9a6UtNs8xrgtt3FShjx/Y6l0YhURhRLVapdnqcOH8Bm+++Ta3bt9h79kzrlxb58mTxzx69JDd3X08b4fDwz6//93HfPLp54yGEzt4ICQFmkkc0/QsVk3nxaztNeeb1x2mf86HBqx0zGhMLiWjyYRJmpIrQ54mNqb3A7wwZJJmBLUaP/jpP3LrjbdYXt+g0e0QRlWrYSYtlxWu6iKMcQMi5ZozrtLifrEo/83tlXPdAAsVcYKjwMHeM5J4SMXHEnPaOAff86ZTR9oxwhuXeJWtv8Ltl9poMplRCIWUYJTFd3lSEFWiKR4wcNqA7U6P9fWLXL16navXrpMkCY1WnS+//JLHm5s8frJFlm0xmaT87jef8MEHv+f4uG/fmiwZ24WTT7CTS2J6LswC12/qwxf9ZoA8V/QHQ2pRFyklhZKOGd+SHeZK4fkBC4tN1qpNLt+8w5233uXKtessrSwTBpEF2fs+URBYwPr8Xlm+L2B26M1V1uZsmhLP7bGFVkwmVh8wDCRKufakwGoYOiJEjONhE7ZKVw6AaK3JsgyKjCDwwASEXoCp2Ok9iSaqRFQrVdf6tuD5dqfD6uo5Ll+9xtWr1+l2OiwudTi/1uPR5iMebz5he2fvaxO7bxX8GGP4/ItHPHq0QxxbjSXPt2KBJo5tG2g0ROv5i1aefrxUEpxtdq/OPt0xYy+2gLASEkhJnhXowqA8mMQxuVLI0IcgZGF5lTs3bnLl+k0WllYJKk2kHyGkb32pDUW5KEtCrmnoM3ejlm9Z2FG7l1sIropgBMrdKFppTk8HlrdD+iAUyuBK9xYYKQwoLMMygJAKY6QNsBQYoVEmd5u6zTiFU+8Ow5BKLaJWrVKt1qjXmnS6i1y6dIO7d95haXkNozPq1SpLiy2yrIfWE5Jkgu9JHny1RZ6mbD09BgOeH+KHAb4fkvX7xJPJtMr2OqzWi757vU2jHhB2TNcIOD45pn1hDSk9u4C1zTy8SoOl1Qtcu32bq9dvsn7xGq12Dz+sgecBcjqJh1HTdTnPmWG9OPd7wYElKbGOs/Us5inl7XNPjk8I/AAnKm2rcp7NZ7UQbvPF3ZVOz0g7iQYhXO/fsQF7cqrrZYzliKlWLXC+Xq/RbLbpdBZZW9vgzp232Lh8hTD0Od7foV7zWVvpgF4hnQw5OTpmOBzxxy8e8nhznyQB3w8RgUdUrdIfDMlVSpFkljr+G1RzvqnZjV7QaNTI8pzj0z6NesSwf8IknSClj/QDGq0e6xuXuHbrNhuXr9FZWsWPqlBO5DHPHDs7OEsfTv/MDwrPupeI6d5h7yfj7tOyJZ6kMQ+/uk+9WkWAlRgxEoPPTHjZyWsoNb29i8I+lucFWVqQJpZPqwTWBoFVAJdSUK2ERFFEVKlQq9Xp9nqsndvg+rWb3L7zBo1WB9BcurgOJieMJEHg89sP73H/3kN2tnaYjDOM8Qj9CC/0LBfZZMxoPCjPlL+pCSAKfOr1OukkZhRnTLKcmvA4GQxIs4yw3mB55QI377zDlevXOb9xmVq9hfADtLSTRbZyI+YO93I8vmyxMl1c07TwOUxSucvOcUwJaRNObfeFUErAAsotZ7/VBpOehzIC40FgBEUh3boXWIFStz6xvhSewZMBeFbVfZp4hBUL0K7VabXarKye59bNO1y5dotKtYI53KfbrHNudQFpMrIsZnt7j5PjAdvSZ9CfoJXF8wWejx+GDAYjkjS254WZoiVnn/obBjsve80GG2lRcHx6yvnVRaT2KHRmrwU+yigqtRatpfNsXLnBjTt3Wb98jU5viUarZUfz56sPwlaM9DyWrPy3uYqj9aXmxUOgTMLnvWm0II5j8jShVpWO5mDW3ZBC4GkBDuRtA6DyjzsbbRiJFNgWc2B1Q8tfH1Y8wqokqkiq1Rrd9gJra+e5dOkqt26/QavbI09GVEKfhV6LLFkkmQynQsWvs28d/IzGBWGliRomlnI/qtPqtJnECZVKBa3tRlKOss+cadza+KY3w+y5Zfk+TlJ8z2c8GpOmGYEfMY7teOHKygqXb9/h+q03WVo7R1Cp4fkRBukUaQs7VCbEXLZipofzdOFOFzDPff/8heC56Nc456WZYjKZ2LPa9Zm10wLykGip0UinWSNwwBHiOLb9VYcBmaoz+3aqwsFNrHyG5+GHIbV6naXlZdbW1rl9+y7Lq+dtK6VQhJFPu1UjTdtkaUw8jqlW7nFyOqbX7WFMgDaaWlijWq+T5RlBGOB7kjy34PG/fhMue0UGgZ3sOBn0GYxHVthS2A1NI+ks9Lj1xpvceft9Lly6SqVeJwhrSOnPpjSm90+pRvXq8rF16Vz2OS0DlW4rgZOuJeLg3dpo4iQm8AMQuQ2AXBZqExZHi6DEFFOkDcRJTJ4pW9kwYsrX5DlAetkCE9KSBFYqEY1Gk+WlFZZWznP16i0uXrlOVK2BiglDn1ajyvJSjyJLGK6tsLd3QpruUCiPIKyTpGP8oEJYCak1awyGIyqVyDKo6pdbJX+1GUM8jvEqIWmRo4UgKQpGSUy11uTixUu89/1/4NKN29RbHYJKFemF9nqL8prM+cvMfFmybdsq7KyVOq30PPdR3LHrtMSMmOYQDAZDBsfHtFsRhnzKYTnf+rMlfosnsuPSwrW0cX8st1aJq5BuPL2c9qlWqwSBlapY6C2wdn6dy5evcfPmHVqdRTCK0JPUazV63TZaZaTxhCAIOO2PqdRaGE7tvRDWqDUqZKfHrv2qyfPieY0kIV6dFH6b4NZAnuUMiwGe9BklGXFmKyOpMjQXlrj55tvceft9ls9doNZqO1V5K1ap3UimXQNlPcJRQziflj54sSos53BL8x6cC2MtU7CxWnVWbmGOrRnXvnZf7RmtUdrqJWWZpS2wJJIK5QYSEMJOIwfSQQ4MSIH0PSrVGt1Ozx6el69z+coNqrUGGE0YhjQaNRa6LfJ0woW1Fe63nrK79wwvqIIIMELjeRWiaoQX+IxGY4LAt+PaL7Qj5z/368DOr+92CIyw9+t4HBPHCQbluHvE9HzY2LjM29/7EVdv3aHWbBNWa1YFwE0FP0dnanBBTbk4DM8vMEGJOfu6ljnMTfkabXmUjLEdDs9i3YSc3Sm2ElT6z3ZQ8jTltD+gWqvZU6KcpBRWFcFzOmoGDULbNROFtNttVlZWuHBhgxs379JeWLGVQc8j9D163Saq6BDHywwHIyej82rcz7duew1HE2QQopF4XkBYqxKnCd1uh4sb6xij2d7Z4eDwmHSKtP7Lo9/Z31024UsUlk4/1yEyiNi4eJHvfP/7rF+/Sb3dBT9ACTkd9cOYGfGWYbb8ymjXvPA4L9+4z92kLviZvt60lGs3cA9LXmjxEDYItKU/W6JN4hQhBFEY2ekrnbC1tUWlUqHbbRGFIX4phRBagjTjqlW+o2ev1xosLa5w7ep1lhaXLYJB2X5rlqf4gUe1VqXVatLrdQnDkOFpaqnYfR9TFITVql0cQnD50mV6vQ5HR0fsPtu1Y5DfklPk1R50lRFsifP4+IQ0z22POvS5sHye73z3u9x+6x06i6uEtTqFFCgj59xjgPJgLLOrV2dYJWupzUrKYuNs3NRgZo+ZWc2vDJo835auPa+8f6yUgdYalRScHp+SpSn1RoNavYEnfQ77xwyHQ5YXlwjDAIFvxRIdLsW4bCd0LKWNep1eb5GNCxusX7hIFFYRSmOExbgEgU+9UaPZarCw0KXRqKGUZhyneGGEFjF4Pl4YEKcpyysrrK+fJ56M2d3d4+joyB6kc/fvX2PGBQxZoRjFlq5ABgGLK6vcvvs2733vx6ysXyasN8H33cTgjPhxuse6NfCiz5j3R3mwG0MpqjqfnFjTs8TFHaej0YA4HrPQq9lN1LMHSKnfN93z54IiZbSdcHQtUEtD4DSevGCamc7+WF4YS8bYY3XlHJcvXaXdXbTZCXZyMQg96vUaadag1+sSBD7jOKFeazq9IvCjkCTLqNZqXDi3RhD4HBwc8Gz/kMlk8vy1+Ou8h8FWp0u5DI1AeCGXrt7kzXe/w/W7b9FeXLX7upOQsdhdC5qZD1emFZ5Sf4tZElj+E9PH5vfTmavLcLdcc9poO63FXMPPaCt86Z6b5wWj4Ygsy5BCUK810EpzeHjIeDxmbWUVP/DBWGxKuU96Agzafe9TrVZptbusX9jg0qUr1OpNhJlVSHzfo96o0mzV6fU6zo8ZuQIR+Og8R4YBwvcptOLC+jorKysM+gN2dnc47Z/+DfbNsr1rg75RnGBkSBRKwiwnLwr8SsSb33mP937wYxbPrVNttMHzrUYgzFrMs1INL+6dz59xs6TRTH33YnDE9L4s703b8s9dlVziOQFg46IfpS0T+GDQ5+T0lMALaLXaVKMKeaXgwYOH1Gs1ur0evhcgfauRV2I6wY73VysRtWrNVuxW1rhy9TqdxWWE54MTCTbSUK1GtFoNut0OnU7nb9f2EkKwcfESjx49YmV1lcuXLxMnE65evcLW1hbHh/tTNeEwnB+lLaPZqRdeet0XHilzhueeI4RtL8R5xjBLCUyFjavXeP8HP+L8pcvUOwuIMGLKoWmkE0Szv74UHBXTlfiq6sFsldrFOGuPzP+snmpwzVW1hMAPQjys1lMuLEp9xoptb5bd3W36/QHNepOlpWWqlTpLS8s8ePCQNE24uHEez6vatpdvlYYdfSlRFFGv12nUayz2eiz0lgiiCIQH2k5PJVmMFhrhWaBfpVLBD3zW1np0Ol2arSYX1teJgoh2t00YBGxuPmL/4IAsTYmiCqPx+JvfGK80M/sjDEYIcq057vcZjCdUqhHdlRV+/I//lVtvvEG9vYgIKnbzFdiASYFQxt06c6fXKzLN8vtZIFpuzOKF98M0AJouZGEp9zzPt+GOm+7Twp/+jFLKCVNq9vb3iE77NJttoqhKt9tlMBixvb3NzetXiQLfZppOCkFKy0kUBAH1Wo1qpUqz0WR1ZZVGs2k3KvdR8iKz3EYSwsij0ahSq1Wo1Wtc2LjA8ckptXqD9fV14ixm4/IGT5885uj4kDxNnTJ4QFF802mgVwT3r/CkMhYcPEkSsqIgqlV573vf4+13v09v6Typ8cAL0EJgkMyVU2Zb6AuVgfnf8JIvAelcPd8tL9ueOFLKElgexxPyzJLAzaYjpRNDNFPQezKJKQpFFAVUoyppUrCz8xSlFIu9RZsxG6xidNlyxuL2giCgElXsAdrssLayRq+3iPDCaXqmtHLrzjKF12oVPM/j4qWLpElGq9Pi8uUrKFVwfn2N8WTM9tZTBoM+WZYRRSFJknxrFufXWnkIYg944VnKiUa3x/f+4UdcunqVRmcZGVZRsuTDAenELsv/mJPUEPP+m1tidq08v5e/FLeW18m1IW1BwOq82X1fujVo7xo3GY0QMInHPN58QuhHLC4sEoQR3U6PwWDE5uYTbly/SqPetJ9WlozfgVt7IVFYo1Zt0u0usLp6nkaz7Q5P+wYn8YRMZQiJrT44NvZut8u5C6vs7u1w7oKVX/E8ycLiIpsPH7G/d0CapIRBOOXPspf+zweur9STnP6bTTqGScI4z6g0WlbkOgj50U//C++8/33ai6v4lQbC89FSTP3sTpw5n81FqPP+m3t86qsy65z+sChfgWm1b+4M9TwfA07eQjpJJoNRYLAM09Vanb1n++we7tLt9Gi22niez/LCMo8ePbIUGIsLDmNpLKDes8KTvu9ZmEe9SavVZXllld7CEsIPXIVQUxhFXmT2HpdQqYTUarW/JeYHDo+O6PYWeOc77+L7PpPxiPFkwubmJuPRwCKzw4hWs0WeF5ZK/y8OhF9YNULakdosZzCJufnGG3z3Jz9lfeMyk1Rx//MvufXGXWRox4gNlrXyuVvguRJs+bleXUWY/tRLN42hbL7MB3XSE9RqddJxgicDfA+s3pkl85JS0mg0uHHzBo83n4ARdDpd8rwgCAIWFhY4Pj7ktD/g4sY60rMMyHayy2pqVWs1Wq0Wy0uWm8ELPJASlWeoPCMvJqRpYsvADhBoD0Sf08GIZqvDm2+9w5XLlzk9PUVpxebmI7a3t1FFQbVaoV6vk6QJo7+6+jOXWWDvn+E45ng44uraKt/7wfe58eZbBLU6f/zqEa3eAmsXzgPCbYqOEFC87LNX+eu5BT398nz2YgOfOYyJc6fBUKtW6Z/YxVYyS5dYEfCoVCpsbKzjewH7+wcsLy9Tq9YZTSasra3RPzkhTTJ6nTZBGFptNimtcKI7PFvtFgsLC7RaTcIotKBeo1F5hiFjkozJMksOZrR9L41Gg6IoODk5Ze3ceW7euEWSJqRZSr/f5+GDh2RZgu95VCsVWq22w7Hkz21Uf3EVwY0rCk+QGUWsNd//3g959/s/oN1bYWfvmCc7+7z97rtUazWbujituvLwAj3t9L7Kd6/0J88xhrmM1kx9IqYVVaZMrnZSxR2jssyhbRKS5zknJ8fs7e1RrdbpdLqOW6nL5uZjVK65uHGRsO7juQkv3GfwPZtEVCtVGrUG7VbLjcw7Acgix5icLE3IspTCOL0+Ya/78fEJnU6P737veyz0FhiNx2gKnjx5wt6zXYxW9rXrDbIsn1Z//lqzwb0jBMVgPI9Kvc57P/wRl27cAi/kky/uc/n6NRqtFlO+MXcdTfk88/w6mr72vL+mVZ8Z5GF+B5imQ64kOwW2G6hWqxYwTMm47zGPywuCgOXlFSQeB3uHtFtdarUahTaw4XF8cEiW5KwsruD7kkJZKQbP0ZcEfkilUqPXXabbXSAII4TnO628DNAkyQSlcpTzXRBYvpskSRgOJ1y5co0bN64zGo1RWnNwuM/jJ09QucL3fKJKRKvV4vT0r6v+zCpgNpEYJyk7+0c0e110WOFH//ATvvuTfyCqttg5OCE3J1y+cgVhnqf4mC6eF5b9y/vl84njC29m9rOCaTA8hY0AtXqNWrVmldi1RCORwmCkpXDzPI9Wo8ntO3d5cP8BAsnGhYsYYDS2U8i5yqlWarRbTbLcypGEoW+TCD+gWq3RbvVYWLCCx9IP7L6ZJSAUSTwmzVIKZYVfhRBUq5W/XfADhqOjQzY2Ntjf36XdtiRIp6e5JQUUggvnz3Nycsrh0eGUOVmVI7GvsFdnnS92hme1oEIrqrUaneUlrt65Q6O7wJO9PTYfbxFEFY6PjwkrIcZIG3BMnWS/avN81DpzehnkvLCQSzTs3Duz/+v5lwUMUljk/WAUUw0siZbRyoEnbSZn9fs8llfW2Hq6zWl/yOraGvUWtLs9kvgCBwcHTJKCejPiYH+fvMg5f+E8vV6HZtOOZjZaHQw+o9GE4XCbwWkf6UnyfMLu7h7D0Qnj8Zj+8ZB+f0RRKPr9ASura4DmydPHrK6skGUZtVqVIAhZWV6h0Wjw+MkmWmt83/9WfDCv8+FsdFIwyXNOxxOWz51ncfUck0zx1eOvODo+pVJv0D8+AWGDn9Ifthw757/ylc2cL8rfOfccu9OWVYCZz8FMJ03sQ3bD9oOA4XCMrvmWo8mUY7plfxu0goWFRfJMs793xKVLLRr1FkFQZbG7wP7eHuM4px3V2H22DcDGxgXqjQb1ep1ub4Fmq01YqZGkKYcHB0zGseW08TQ7u1sc7O+TJBP6p6cM+iOrtJ3lnPb7LC0tsbW1yfLyMq1WjTSf0Go2ybKIjfV1Dg4OODy0a68oipc2uFd66jWPl+OuduNTFEowmsT0lldYu3gF7Ve4v/mEh4+2WFxeYzwa28kNA6BnFdby4gFazaEQyvWHvcZ62sqyvDCyrJw6kxjHKF1+LocnMlbEMklzJnGCEAXK6UGVGzbCtsB6vUUmk4w0yanX2pYAztcs9lbIs4wsLahX60hPWi0iVdBoNKhWqkRRhWqtRlSpUyjD8Umfau0YGQwYDfr4gaR/esDe3j7Dcd/qMp0OKJTi4OiQTqdLPBlzIqDX6zKajGi1Wgz6fZaXl/GE5MnW0+daCq/yzZ/Hjbxodhi9EkTcvXuH977/PZbWznFwMuDp1g5JquguLljhXPfzaMeozFy279aXMA7SqvX0kC0Pw3L9vYgZKb9TxsmSYKa+E8YSRQ4GY8LQWL4jU1IxzCeZHr3uAvEo5dnuHpcvX8GXklqlRn39IkeHhxwd9+l1u2zvPgMBK2tWnLRSq9Nudmi2OiA8JmmCODlkMhySZylhGLC9s83+wQHjZMigbzW1srxgEscMR0OajQZbW09ZXl4GIQmD0GqFNUOWlpd5+vSxJelzygVf57/X++z5RE+hSYqC/dM+3ZMhly5f4cKVayjh88Wf7rO7t8+F9Yv0T06sTiU24JhWx58rfJdwjNm+N21zzYO1jd2zZ88tAyrjyGDKvdVKjAidowxM4sxOKuvCJSeO+sBAORV+7vw69+8/4KQ/oLe4SLUuWUASJzG7uwfU6y0Oj/rsH+xz6dIGy8vLRNUG3e4C3c4ClWqLwkj6oxHxwQHj4YBKJWDQP2Jn5xnxZMB4MqJ/OmIwGs/FES+b+DYHmxDCTMv4zolW7G3GcFuyNn8ddf5fa5bpOSIMQyu0pqwujWWE9V4MdJ+zr39H5uUfetWLfc2LFMqOXc7oBcyrn2JmavGy1KVyFYiS5VJIR2lvSoE5y88gpKQUhZPStkyMmw4rX7e8mY12goVOK2teA0tKjzJQKIrC/ZugKP7SgOfPmwB8l1H5vv19ym26vgPpfZ19a/99C7Njs/mf9x1249BKO5btMoCyXDJWe0vY7FOIKfZHOp8JIaZK2Bimej8CFzCXLQenBVYobYnX3OtAOUFoN9GSc+n/i7XnSTkdG7aEmXbt+Z6luPhz9rXv6qX3/OLrvf7ZWiuyNLUt4vJnX8x6yz3b6Vj5c5is5/APtkduD3OY+g1XxRGuKiik0zhk/iCxrz07/DRxnAIliPP5fbP0X3lgvhiw/i2t5CYLw9Dy4hjj9io5BchOL9Qr7OU9rHzhuQde3DvN3NevMcvBVLi193VHFnZP0wrPs7n7PAhXOnqQoiisBqUn5/ZLMQ2o7WM4vJcN1qxu4RyQWxvywnLOzF8fWY77Y9x7tv4s197/G+a5FrrvmMXt/qJcddh/pTj3N7K5fe5bPYXnl1aWpcxCpJm9dEcZ40RNS7qAEjxtpuecKmaVt6nfXDsN93chhJODMg42oF3wPgs6tTZu7fGhMeb9Fz/Htw1+DoDH3/gJZ3ZmZ3ZmZ3ZmZ3Zm///ZRWPM0osPfqvg58zO7MzO7MzO7MzO7H91+wtrZWd2Zmd2Zmd2Zmd2Zv9r2lnwc2ZndmZndmZndmZ/V3YW/JzZmZ3ZmZ3ZmZ3Z35WdBT9ndmZndmZndmZn9ndlZ8HPmZ3ZmZ3ZmZ3Zmf1d2Vnwc2ZndmZndmZndmZ/V3YW/JzZmZ3ZmZ3ZmZ3Z35WdBT9ndmZndmZndmZn9ndlZ8HPmZ3ZmZ3ZmZ3Zmf1d2f8DVf2OrMwH7xEAAAAASUVORK5CYII=",
+ "text/plain": [
+ "