-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsimulations.py
264 lines (240 loc) · 8.02 KB
/
simulations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
import json
import random
from pathlib import Path
import numpy as np
from tqdm import tqdm
from src.file import get_simulation_results_folder
from src.pattern import (
get_pattern,
get_possible_words,
pattern_to_int_list,
patterns_to_string,
)
from src.prior import get_frequency_based_priors, get_true_wordle_prior, get_word_list
from src.solver import brute_force_optimal_guess, optimal_guess
GAME_NAMES = ["wordle", "dungleon"]
# Run simulated wordle games
def simulate_games(
game_name,
first_guess=None,
priors=None,
look_two_ahead=False,
optimize_for_uniform_distribution=False,
second_guess_map=None,
exclude_seen_words=False,
test_set=None,
shuffle=False,
hard_mode=False,
purely_maximize_information=False,
brute_force_optimize=False,
brute_force_depth=10,
results_file=None,
next_guess_map_file=None,
quiet=False,
):
all_words = get_word_list(game_name, short=False)
short_word_list = get_word_list(game_name, short=True)
if first_guess is None:
first_guess = optimal_guess(
all_words,
all_words,
priors,
game_name=game_name,
look_two_ahead=look_two_ahead,
purely_maximize_information=purely_maximize_information,
optimize_for_uniform_distribution=optimize_for_uniform_distribution,
)
if priors is None:
priors = get_frequency_based_priors(game_name)
if test_set is None or test_set[0] is None:
test_set = short_word_list
if shuffle:
random.shuffle(test_set)
seen = set()
# Function for choosing the next guess, with a dict to cache
# and reuse results that are seen multiple times in the sim
next_guess_map = {}
def get_next_guess(guesses, patterns, possibilities):
phash = "".join(
str(g) + "".join(map(str, pattern_to_int_list(p)))
for g, p in zip(guesses, patterns, strict=True)
)
if second_guess_map is not None and len(patterns) == 1:
next_guess_map[phash] = second_guess_map[patterns[0]]
if phash not in next_guess_map:
choices = all_words
if hard_mode:
for guess, pattern in zip(guesses, patterns, strict=True):
choices = get_possible_words(guess, pattern, choices, game_name)
if brute_force_optimize:
next_guess_map[phash] = brute_force_optimal_guess(
choices,
possibilities,
priors,
game_name=game_name,
n_top_picks=brute_force_depth,
)
else:
next_guess_map[phash] = optimal_guess(
choices,
possibilities,
priors,
game_name,
look_two_ahead=look_two_ahead,
purely_maximize_information=purely_maximize_information,
optimize_for_uniform_distribution=optimize_for_uniform_distribution,
)
return next_guess_map[phash]
# Go through each answer in the test set, play the game,
# and keep track of the stats.
scores = np.zeros(0, dtype=int)
game_results = []
score_dist = []
total_guesses = 0
for answer in tqdm(
test_set,
leave=False,
desc=" Trying all wordle answers",
):
guesses = []
patterns = []
possibility_counts = []
possibilities = list(filter(lambda w: priors[w] > 0, all_words))
if exclude_seen_words:
possibilities = list(filter(lambda w: w not in seen, possibilities))
score = 1
guess = first_guess
while guess != answer:
pattern = get_pattern(guess, answer, game_name)
guesses.append(guess)
patterns.append(pattern)
possibilities = get_possible_words(guess, pattern, possibilities, game_name)
possibility_counts.append(len(possibilities))
score += 1
guess = get_next_guess(guesses, patterns, possibilities)
# Accumulate stats
scores = np.append(scores, [score])
score_dist = [
int((scores == i).sum()) for i in range(1, scores.max(initial=0) + 1)
]
total_guesses = scores.sum()
average = scores.mean()
seen.add(answer)
game_results.append(
{
"score": int(score),
"answer": answer,
"guesses": guesses,
"patterns": list(map(int, patterns)),
"reductions": possibility_counts,
},
)
# Print outcome
if not quiet:
message = "\n".join(
[
"",
f"Score: {score}",
f"Answer: {answer}",
f"Guesses: {guesses}",
f"Reductions: {possibility_counts}",
*patterns_to_string((*patterns, 3**5 - 1)).split("\n"),
*" " * (6 - len(patterns)),
f"Distribution: {score_dist}",
f"Total guesses: {total_guesses}",
f"Average: {average}",
*" " * 2,
],
)
if answer is not test_set[0]:
# Move cursor back up to the top of the message
n = len(message.split("\n")) + 1
print("\033[F\033[K" * n)
else:
print("\r\033[K\n")
print(message)
final_result = {
"score_distribution": score_dist,
"total_guesses": int(total_guesses),
"average_score": float(scores.mean()),
"game_results": game_results,
}
# Save results
for obj, file in (
(final_result, results_file),
(next_guess_map, next_guess_map_file),
):
if file:
path = Path(get_simulation_results_folder(game_name)) / file
with Path(path).open("w", encoding="utf8") as fp:
json.dump(obj, fp)
return final_result, next_guess_map
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--game-name",
type=str,
choices=GAME_NAMES,
default="wordle",
help="Game name",
)
parser.add_argument(
"--first-guess",
type=str,
default=None,
help="Pre-computed first guess",
)
parser.add_argument(
"--test-answer",
type=str,
default=None,
help="Solution with which to test the solver",
)
parser.add_argument(
"--max-info",
dest="purely_maximize_information",
action="store_true",
help="Purely maximize information",
)
parser.add_argument(
"--flat-dist",
dest="optimize_for_uniform_distribution",
action="store_true",
help="Optimize for uniform distribution",
)
parser.add_argument(
"--look-ahead",
dest="look_two_ahead",
action="store_true",
help="Look two ahead",
)
parser.add_argument(
"--shuffle",
action="store_true",
help="Shuffle the test set",
)
parser.add_argument(
"--brute-force",
dest="brute_force_optimize",
action="store_true",
help="Perform brute-force optimization",
)
parser.add_argument(
"--hard-mode",
action="store_true",
help="Play the hard mode",
)
args = parser.parse_args()
results, decision_map = simulate_games(
game_name=args.game_name,
first_guess=args.first_guess,
test_set=[args.test_answer],
priors=get_true_wordle_prior(args.game_name),
purely_maximize_information=args.purely_maximize_information,
optimize_for_uniform_distribution=args.optimize_for_uniform_distribution,
look_two_ahead=args.look_two_ahead,
shuffle=args.shuffle,
brute_force_optimize=args.brute_force_optimize,
hard_mode=args.hard_mode,
)