-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_acdc.py
268 lines (216 loc) · 12.2 KB
/
train_acdc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# CUDA_VISIBLE_DEVICES=1,2,4,5
import io
import os
import argparse
from tqdm import tqdm
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import utils as vutils
from models.GPTrack_3D import RViT
from einops import rearrange
from utils.tools import get_world_size, get_global_rank, get_local_rank, get_master_ip
from datasets.ACDC import ACDC_Dataset
from monai.data import DataLoader
import cv2
import wandb
import matplotlib.pyplot as plt
class Train:
def __init__(self, args):
self.RViT = RViT(image_size = args.image_size,
patch_size = args.patch_size,
length = args.image_size[2],
depth = args.num_layers,
heads = args.num_heads,
mlp_dim = args.latent_dim,
dropout = 0.1,).to(args.device)
# pretrain_params = torch.load('/home/jyangcu/Pulmonary_Arterial_Hypertension/results/checkpoints/checkpoint_149.pth', map_location='cpu')
# pretrain_params = {k.replace('module.', ''): v for k, v in pretrain_params.items() if k.replace('module.', '') in self.RViT.state_dict()}
# self.RViT.load_state_dict(pretrain_params)
self.optimizer = torch.optim.Adam(filter(lambda x: x.requires_grad, self.RViT.parameters()), lr=args.learning_rate, betas=[args.beta1, args.beta2])
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=50, gamma=0.1)
print("---- Finish the Model Loading ----")
if args.distributed:
self.RViT = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.RViT)
self.RViT = torch.nn.parallel.DistributedDataParallel(self.RViT, broadcast_buffers=True, find_unused_parameters=True,)
elif len(args.enable_GPUs_id) > 1:
# For normal
self.RViT = torch.nn.DataParallel(self.RViT, device_ids=args.enable_GPUs_id, output_device=args.enable_GPUs_id[0])
self.mseloss = torch.nn.MSELoss()
self.l1loss = torch.nn.L1Loss()
self.prepare_training()
infos = np.load('/home/jyangcu/Pulmonary_Arterial_Hypertension/datasets/dataset_utils/ACDC_info.npy', allow_pickle=True).item()
train_dataset = ACDC_Dataset(args, infos)
self.train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=8, drop_last=True)
print("---- Finish the Dataset Loading ----")
self.train(args)
@staticmethod
def prepare_training():
os.makedirs("results", exist_ok=True)
os.makedirs("checkpoints", exist_ok=True)
def train(self, args):
for epoch in range(args.epochs):
pbar = tqdm(self.train_loader)
for step, (vids) in enumerate(pbar):
b, c, t, h, w, d = vids.shape
input_vids = vids
hidden = torch.zeros(1, ((args.image_size[0] * args.image_size[1] * args.image_size[2]) // (args.patch_size[0] * args.patch_size[1] * args.patch_size[2])), args.latent_dim).to(args.device)
loss, inf_flow_all, neg_inf_flow_all, lag_flow, lag_register, forward_regsiter, backward_regsiter = self.RViT(input_vids.to(args.device), hidden)
(kl_param_loss, recon_loss_tgt, recon_loss_src, smooth_loss_inf, smooth_loss_neg, lag_gradient_loss, recon_loss_lag, recon_loss_lag_l1, total_loss) = loss
self.optimizer.zero_grad()
total_loss.backward(retain_graph=False)
self.optimizer.step()
if args.clip_grad:
torch.nn.utils.clip_grad_norm_(self.RViT.parameters(), max_norm=1, norm_type=2)
if args.wandb:
if args.local_rank == args.enable_GPUs_id[0]:
wandb.log({'Loss/Total Loss': total_loss,
'Loss/KL Param Loss': kl_param_loss,
'Loss/Recon target Loss': recon_loss_tgt,
'Loss/Recon Source Loss': recon_loss_src,
'Loss/Smooth Inf Loss': smooth_loss_inf,
'Loss/Smooth Neg Loss': smooth_loss_neg,
'Loss/Lag Gardient Loss': lag_gradient_loss,
'Loss/Recon Lag Loss': recon_loss_lag,
'Loss/Recon Lag Loss L1': recon_loss_lag_l1,
})
# for idx in range(len(inf_flow_all)-1):
# inf_flow_plt = self.plot_warpgrid(args, input_vids[0, :, idx, ...], inf_flow_all[idx][0, ...], interval=8)
# inf_flow_plt.savefig(f'./results/flow_result/out_inf_flow_translation_warp_{idx}.png')
# inf_flow_plt.clf()
# lag_flow_plt = self.plot_warpgrid(args, lag_register[0][idx], lag_flow[0, :, idx, ...], interval=8)
# lag_flow_plt.savefig(f'./results/flow_result/out_lag_flow_translation_warp_{idx}.png')
# lag_flow_plt.clf()
# orginial_imgs = input_vids[0, :, 1:, ...].transpose(0, 1)
# forward_imgs = torch.stack(forward_regsiter, dim=0)[:, 0, ...].detach().cpu()
# backward_imgs = torch.stack(backward_regsiter, dim=0)[:, 0, ...].detach().cpu()
# lag_imgs = lag_register[0].detach().cpu()
# combine_imgs = torch.cat([orginial_imgs, forward_imgs, backward_imgs, lag_imgs], dim=0)
# vutils.save_image(combine_imgs.add(1.0).mul(0.5), os.path.join("results/example_result", f"example_{epoch}_{step}.jpg"), nrow=len(inf_flow_all))
self.scheduler.step()
torch.save(self.RViT.state_dict(), f'./results/checkpoints/checkpoint_{epoch}.pth')
def plot_warpgrid(self, args, img, warp, interval=2, show_axis=False):
"""
plots the given warpgrid
@param warp: array, H x W x 2, the transformation
@param interval: int, The interval between grid-lines
@param show_axis: Bool, should axes be included?
@return: matplotlib plot. Show with plt.show()
"""
vectors = [torch.arange(0, s) for s in (args.image_size[0], args.image_size[1])]
grids = torch.meshgrid(vectors)
grid = torch.stack(grids) # y, x, z
grid = torch.unsqueeze(grid, 0) # add batch
grid = grid.type(torch.FloatTensor)
warp = warp.unsqueeze(0).detach().cpu()
warp = grid + warp
shape = warp.shape[2:]
for i in range(len(shape)):
warp[:, i, ...] = 2 * (warp[:, i, ...] / (shape[i] - 1) - 0.5)
if len(shape) == 2:
warp = warp.permute(0, 2, 3, 1)
warp = warp[..., [1, 0]]
elif len(shape) == 3:
warp = warp.permute(0, 2, 3, 4, 1)
warp = warp[..., [2, 1, 0]]
warp = warp[0, ...].numpy()
img = img.transpose(1,2).add(1.0).mul(127.5).permute(1, 2, 0)
plt.imshow(img.detach().cpu().numpy(), cmap='gray', vmin=0, vmax=255)
if show_axis is False:
plt.axis('off')
ax = plt.gca()
# ax.invert_yaxis()
ax.set_aspect('equal')
for row in range(0, warp.shape[0], interval):
plt.plot(warp[row, :, 1], warp[row, :, 0], 'c')
for col in range(0, warp.shape[1], interval):
plt.plot(warp[:, col, 1], warp[:, col, 0], 'c')
return plt
def draw_grid(self, img, grid_height = 6, grid_width = 6, line_width=5):
height, width, _ = img.shape
img = (img + 1) * 127.5
# img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
for x in range(0, width-1, grid_width):
cv2.line(img, (x, 0), (x, height), (255))
for y in range(0, height-1, grid_height):
cv2.line(img, (0, y), (width, y), (255))
img = img / 127.5 - 1
return img
def main(rank, args):
def wandb_init():
wandb.init(
project='Unsupervised Echocardiogram Segmentation',
entity='jiewen-yang66',
name='PHHK-Dataset-Deep-Tag',
notes='Ver 1.0',
save_code=True
)
wandb.config.update(args)
try:
args.local_rank
except AttributeError:
args.global_rank = rank
args.local_rank = args.enable_GPUs_id[rank]
else:
if args.distributed:
args.global_rank = rank
args.local_rank = args.enable_GPUs_id[rank]
if args.distributed:
torch.cuda.set_device(int(args.local_rank))
torch.distributed.init_process_group(backend='nccl',
init_method=args.init_method,
world_size=args.world_size,
rank=args.global_rank,
group_name='mtorch'
)
print('using GPU {}-{} for training'.format(
int(args.global_rank), int(args.local_rank)
))
if args.wandb:
if args.local_rank == args.enable_GPUs_id[0]:
wandb_init()
else:
if args.wandb:
wandb_init()
if torch.cuda.is_available():
args.device = torch.device("cuda:{}".format(args.local_rank))
else:
args.device = 'cpu'
Train(args)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="EchoNet")
parser.add_argument('--latent-dim', type=int, default=64, help='Latent dimension n_z (default: 256)')
parser.add_argument('--image-size', type=tuple, default=(128, 128, 16), help='Image height and width (default: (112, 112 ,16))')
parser.add_argument('--image-channels', type=int, default=1, help='Number of channels of images (default: 3)')
parser.add_argument('--patch-size', type=int, default=(16, 16, 16), help='Patch height and width (default: 8)')
parser.add_argument('--blurring', type=bool, default=False, help='Whether blur the image')
parser.add_argument('--max_sample_rate', type=int, default=1, help='The sampling rate for the video')
parser.add_argument('--num-heads', type=int, default=8, help='The number of head of multiscale attention (default: 8)')
parser.add_argument('--num-layers', type=int, default=2, help='The number of transformer layers')
parser.add_argument('--mask-size', type=int, default=8, help='The size of mask patch (default: 16)')
parser.add_argument('--mask-ratio', type=float, default=0.7, help='The ratio of masking area in an image (default: 0.75)')
parser.add_argument('--selected-view', type=list, default=['4'], help='The selected view from dataset')
parser.add_argument('--dataset-path', type=str, default='/home/jyangcu/Dataset/PH_HK_image', help='Path to data (default: /data)')
parser.add_argument('--batch-size', type=int, default=1, help='Input batch size for training (default: 6)')
parser.add_argument('--epochs', type=int, default=150, help='Number of epochs to train (default: 50)')
parser.add_argument('--learning-rate', type=float, default=5e-4, help='Learning rate (default: 0.0002)')
parser.add_argument('--beta1', type=float, default=0.9, help='Adam beta param (default: 0.0)')
parser.add_argument('--beta2', type=float, default=0.99, help='Adam beta param (default: 0.999)')
parser.add_argument('--clip-grad', type=bool, default=True, help='perform gradient clipping in training (default: False)')
parser.add_argument('--enable_GPUs_id', type=list, default=[5], help='The number and order of the enable gpus')
parser.add_argument('--wandb', type=bool, default=False, help='Enable Wandb')
args = parser.parse_args()
# setting distributed configurations
# args.world_size = 1
args.world_size = len(args.enable_GPUs_id)
args.init_method = f"tcp://{get_master_ip()}:{23455}"
args.distributed = True if args.world_size > 1 else False
# setup distributed parallel training environments
if get_master_ip() == "127.0.0.1" and args.distributed:
# manually launch distributed processes
torch.multiprocessing.spawn(main, nprocs=args.world_size, args=(args,))
else:
# multiple processes have been launched by openmpi
args.local_rank = args.enable_GPUs_id[0]
args.global_rank = args.enable_GPUs_id[0]
main(args.local_rank, args)