-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_offline.py
402 lines (341 loc) · 16.6 KB
/
inference_offline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import argparse
import random
import time
import numpy as np
import torch
import util.misc as utils
from models import build_model
import torchvision.transforms as T
import matplotlib.pyplot as plt
import os
from PIL import Image, ImageDraw
import math
import torch.nn.functional as F
import pickle
import torchvision.transforms.functional as TF
from sklearn import metrics
# os.environ["CUDA_VISIBLE_DEVICES"] = "7"
# build transform
transform = T.Compose([
T.Resize((320, 320)),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def get_args_parser():
parser = argparse.ArgumentParser('SurgFormer', add_help=False)
parser.add_argument('--lr', default=2e-4, type=float)
parser.add_argument('--lr_backbone_names', default=["backbone.0"], type=str, nargs='+')
parser.add_argument('--lr_backbone', default=2e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--lr_drop', default=40, type=int)
parser.add_argument('--lr_drop_epochs', default=None, type=int, nargs='+')
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--sgd', action='store_true')
# Variants of Deformable DETR
parser.add_argument('--with_box_refine', default=False, action='store_true')
parser.add_argument('--two_stage', default=False, action='store_true')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--position_embedding_scale', default=2 * np.pi, type=float,
help="position / size * scale")
parser.add_argument('--num_feature_levels', default=4, type=int, help='number of feature levels')
# * Transformer
parser.add_argument('--enc_layers', default=3, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=3, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--query_enc_layers', default=1, type=int,
help="Number of query encoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=1024, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=4, type=int,
help="Number of query slots")
parser.add_argument('--dec_n_points', default=4, type=int)
parser.add_argument('--enc_n_points', default=4, type=int)
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Loss coefficients
parser.add_argument('--phase_loss_coef', default=1, type=float)
parser.add_argument('--phase_ant_loss_coef', default=5, type=float)
parser.add_argument('--tool_loss_coef', default=1, type=float)
parser.add_argument('--tool_ant_loss_coef', default=5, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
# dataset parameters
parser.add_argument('--dataset_file', default='mvp')
parser.add_argument('--sequence_length', default=32, type=int)
parser.add_argument('--resize', default=320, type=int)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='weights/checkpoint.pth', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--cache_mode', default=False, action='store_true', help='whether to cache images on memory')
return parser
def main(args):
args.dataset_file = "mvp"
args.batch_size == 1
print("Inference only supports for batch size = 1")
print(args)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# load data
data_path = '/nfs/usrhome/eemenglan/71_heart/test_paths_labels1_4task_27.pkl'
with open(data_path, 'rb') as f:
test_paths_labels = pickle.load(f)
test_paths = test_paths_labels[0]
test_labels = test_paths_labels[1]
video_list = test_paths_labels[2]
print(video_list, sum(video_list))
# generate the lables
phase_label_all = [] # 12 list
phase_ant_label_all = [] # 12 list
tool_ant_label_all = [] # 8 list
test_labels_12 = np.asarray(test_labels, dtype=np.float32)
phase_labels = test_labels_12[:, 0] # all the samples
tool_labels = test_labels_12[:, 1: 9].astype(np.int32)
phase_ant_labels = test_labels_12[:, 9: 21]
tool_ant_labels = test_labels_12[:, 21: 29]
count = 0
for num in video_list:
phase_label_each_video = phase_labels[count : count+num].tolist()
phase_label_each_video = list(map(int, phase_label_each_video))
phase_ant_label_each_video = phase_ant_labels[count : count + num].tolist()
tool_ant_label_each_video = tool_ant_labels[count: count + num].tolist()
count = count + num
phase_label_all.append(phase_label_each_video)
phase_ant_label_all.append(phase_ant_label_each_video)
tool_ant_label_all.append(tool_ant_label_each_video)
# model
model, criterion = build_model(args)
device = args.device
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
print('load weights from: ', args.resume)
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
else:
raise ValueError('Please specify the checkpoint for inference.')
# start inference
# num_all_frames = 0
model.eval()
# 1. for each video
video_num = len(video_list)
count = 0
pred_phase_all = []
pred_tool_all = []
pred_phase_ant_all = []
pred_tool_ant_all = []
print('start inference')
for i in range(video_num): # video_num
video_len = video_list[i]
# NOTE: the im2col_step for MSDeformAttention is set as 64
# so the max length for a clip is 64
# store the video pred results
pred_phase_each_video = []
pred_tool_each_video = []
pred_phase_ant_each_video = []
pred_tool_ant_each_video = []
frames_ids = [x for x in range(video_len)]
# 3. for each clip
for clip_id in range(0, video_len, 64):
clip_frames_ids = frames_ids[clip_id : clip_id + 64]
# clip_len = len(clip_frames_ids)
# load the clip images
imgs = []
for t in clip_frames_ids:
t = t+count
img_path = test_paths[t]
img = Image.open(img_path).convert('RGB')
imgs.append(transform(img)) # list[Img]
imgs = torch.stack(imgs, dim=0).to(args.device) # [video_len, 3, H, W]
with torch.no_grad():
time1 = time.time()
outputs = model([imgs])
time2 = time.time()
time_t = time2 - time1
print(time_t)
pred_phase_logits = outputs["pred_phase"][0] # [t, k]
pred_tool_logits = outputs["pred_tool"][0] # [t, k]
pred_phase_ant = outputs["pred_phase_ant"][0] # [t, k]
pred_tool_ant = outputs["pred_tool_ant"][0] # [t, k]
# according to pred_logits, select the query index
pred_scores = pred_phase_logits.sigmoid() # [t, k]
_,pred_phase = pred_scores.max(-1) # [t,]
pred_phase = pred_phase.data.cpu()
pred_tool_scores = pred_tool_logits.sigmoid() # [t, k]
pred_tool_scores = pred_tool_scores.data.cpu()
pred_tool_scores = torch.tensor(pred_tool_scores > 0.5).int()
pred_phase_each_video.append(pred_phase)
pred_tool_each_video.append(pred_tool_scores)
pred_phase_ant_each_video.append(pred_phase_ant)
pred_tool_ant_each_video.append(pred_tool_ant)
count = count + video_len
pred_phase_each_video = torch.cat(pred_phase_each_video, dim=0)
pred_tool_each_video = torch.cat(pred_tool_each_video, dim=0)
pred_phase_ant_each_video = torch.cat(pred_phase_ant_each_video, dim=0)
pred_tool_ant_each_video = torch.cat(pred_tool_ant_each_video, dim=0)
pred_phase_all.append(pred_phase_each_video)
pred_tool_all.append(pred_tool_each_video)
pred_phase_ant_all.append(pred_phase_ant_each_video)
pred_tool_ant_all.append(pred_tool_ant_each_video)
print('precessed frames: ', video_len)
# calculate the Acc, Precision, Recall and the Ja
test_acc_each_video = []
all_preds_phase = []
all_labels_phase = []
all_preds_phase_ant = []
all_labels_phase_ant = []
all_preds_tool = []
all_preds_tool_ant = []
all_labels_tool_ant = []
video_num = len(pred_phase_all)
for i in range(video_num):
preds_phase = pred_phase_all[i]
phase_label = torch.tensor(phase_label_all[i])
frames_num = preds_phase.shape[0]
acc = float(torch.sum(preds_phase == phase_label)) / frames_num
test_acc_each_video.append(acc)
preds_tool = pred_tool_all[i]
preds_ant_phase = pred_phase_ant_all[i]
phase_ant_label = phase_ant_label_all[i]
#
preds_ant_tool = pred_tool_ant_all[i]
tool_ant_label = tool_ant_label_all[i]
for j in range(len(preds_phase)):
all_preds_phase.append(int(preds_phase[j]))
for j in range(len(phase_label)):
all_labels_phase.append(int(phase_label[j]))
for j in range(len(preds_tool)):
all_preds_tool.append(preds_tool.numpy()[j])
#
for j in range(len(preds_ant_phase)):
all_preds_phase_ant.append(preds_ant_phase.data.cpu().numpy()[j])
for j in range(len(phase_ant_label)):
all_labels_phase_ant.append(phase_ant_label[j])
for j in range(len(preds_ant_tool)):
all_preds_tool_ant.append(preds_ant_tool.data.cpu().numpy()[j])
for j in range(len(tool_ant_label)):
all_labels_tool_ant.append(tool_ant_label[j])
# phase
print('---------------------------------------------------')
print("Phase Recognition")
test_acc_video = np.mean(test_acc_each_video) # ACC
print('Acc_video: ', test_acc_video)
print('Acc_each_video: ', test_acc_each_video)
test_precision_phase = metrics.precision_score(all_labels_phase, all_preds_phase, average='macro')
print('Precision: ', test_precision_phase)
test_recall_phase = metrics.recall_score(all_labels_phase, all_preds_phase, average='macro')
print('Recall: ', test_recall_phase)
test_jaccard_phase = metrics.jaccard_score(all_labels_phase, all_preds_phase, average='macro')
print('Jaccard: ', test_jaccard_phase)
test_precision_each_phase = metrics.precision_score(all_labels_phase, all_preds_phase, average=None)
print('Precision_each_phase: ', test_precision_each_phase)
test_recall_each_phase = metrics.recall_score(all_labels_phase, all_preds_phase, average=None)
print('Recall_each_phase: ', test_recall_each_phase)
test_jaccard_each_phase = metrics.jaccard_score(all_labels_phase, all_preds_phase, average=None)
print('Jaccard_each_phase: ', test_jaccard_each_phase)
print('---------------------------------------------------')
print("Tool Recognition")
# tool recognition
all_preds_tool = np.array(all_preds_tool)
test_precision_tool = metrics.average_precision_score(tool_labels, all_preds_tool, average='macro')
print('mAP of tool recognition: ', test_precision_tool)
test_precision_each_tool = metrics.average_precision_score(tool_labels, all_preds_tool, average=None)
print('AP of each tool: ', test_precision_each_tool)
# phase_anticipation
all_preds_phase_ant = np.array(all_preds_phase_ant).transpose(1, 0)
all_labels_phase_ant = np.array(all_labels_phase_ant).transpose(1, 0)
horizon = 5
in_MAE = []
eMAE = []
pMAE = []
for y, t in zip(all_preds_phase_ant, all_labels_phase_ant):
inside_horizon = (t > 0.0) & (t < 1.0)
e_anticipating = (t < 1*.1) & (t > 0.0)
anticipating = (y > 1 * .1) & (y < 1 * .9)
in_MAE_ins = np.mean(np.abs(y[inside_horizon]*horizon-t[inside_horizon]*horizon))
if not np.isnan(in_MAE_ins):
in_MAE.append(in_MAE_ins)
pMAE_ins = np.mean(np.abs(y[anticipating]*horizon-t[anticipating]*horizon))
if not np.isnan(pMAE_ins):
pMAE.append(pMAE_ins)
eMAE_ins = np.mean(np.abs(y[e_anticipating]*horizon-t[e_anticipating]*horizon))
if not np.isnan(eMAE_ins):
eMAE.append(eMAE_ins)
print('---------------------------------------------------')
print("Phase Anticipation")
in_MAE_phase = np.mean(in_MAE)
print('in_MAE_test of Phase_ant: ', in_MAE_phase)
pMAE_phase = np.mean(pMAE)
print('pMAE_test of Phase_ant: ', pMAE_phase)
eMAE_phase = np.mean(eMAE)
print('eMAE_test of Phase_ant: ', eMAE_phase)
# tool anticipation
all_preds_tool_ant = np.array(all_preds_tool_ant).transpose(1, 0)
all_labels_tool_ant = np.array(all_labels_tool_ant).transpose(1, 0)
horizon = 5
in_MAE = []
eMAE = []
pMAE = []
for y, t in zip(all_preds_tool_ant, all_labels_tool_ant):
inside_horizon = (t > 0.0) & (t < 1.0)
e_anticipating = (t < 1 * .1) & (t > 0.0)
anticipating = (y > 1 * .1) & (y < 1 * .9)
in_MAE_ins = np.mean(np.abs(y[inside_horizon] * horizon - t[inside_horizon] * horizon))
if not np.isnan(in_MAE_ins):
in_MAE.append(in_MAE_ins)
pMAE_ins = np.mean(np.abs(y[anticipating] * horizon - t[anticipating] * horizon))
if not np.isnan(pMAE_ins):
pMAE.append(pMAE_ins)
eMAE_ins = np.mean(np.abs(y[e_anticipating] * horizon - t[e_anticipating] * horizon))
if not np.isnan(eMAE_ins):
eMAE.append(eMAE_ins)
print('---------------------------------------------------')
print("Tool Anticipation")
in_MAE_tool = np.mean(in_MAE)
print('in_MAE_test of Tool_ant: ', in_MAE_tool)
pMAE_tool = np.mean(pMAE)
print('pMAE_test of Tool_ant: ', pMAE_tool)
eMAE_tool = np.mean(eMAE)
print('eMAE_test of Tool_ant: ', eMAE_tool)
if __name__ == '__main__':
parser = argparse.ArgumentParser('MVP inference script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)