-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathevaluate.py
368 lines (309 loc) · 17.9 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
"""
EfficientPose (c) by Steinbeis GmbH & Co. KG für Technologietransfer
Haus der Wirtschaft, Willi-Bleicher-Straße 19, 70174 Stuttgart, Germany
Yannick Bukschat: [email protected]
Marcus Vetter: [email protected]
EfficientPose is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License.
The license can be found in the LICENSE file in the root directory of this source tree
or at http://creativecommons.org/licenses/by-nc/4.0/.
---------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------------------------
Based on:
Keras EfficientDet implementation (https://github.com/xuannianz/EfficientDet) licensed under the Apache License, Version 2.0
---------------------------------------------------------------------------------------------------------------------------------
The official EfficientDet implementation (https://github.com/google/automl) licensed under the Apache License, Version 2.0
---------------------------------------------------------------------------------------------------------------------------------
EfficientNet Keras implementation (https://github.com/qubvel/efficientnet) licensed under the Apache License, Version 2.0
---------------------------------------------------------------------------------------------------------------------------------
Keras RetinaNet implementation (https://github.com/fizyr/keras-retinanet) licensed under
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import argparse
import os
import sys
import tensorflow as tf
from model import build_EfficientPose
from eval.common import evaluate
def parse_args(args):
"""
Parse the arguments.
"""
parser = argparse.ArgumentParser(description='Simple EfficientPose evaluation script.')
subparsers = parser.add_subparsers(help = 'Arguments for specific dataset types.', dest='dataset_type')
subparsers.required = True
linemod_parser = subparsers.add_parser('linemod')
linemod_parser.add_argument('linemod_path', help = 'Path to dataset directory (ie. /Datasets/Linemod_preprocessed).')
linemod_parser.add_argument('--object-id', help = 'ID of the Linemod Object to train on', type = int, default = 8)
occlusion_parser = subparsers.add_parser('occlusion')
occlusion_parser.add_argument('occlusion_path', help = 'Path to dataset directory (ie. /Datasets/Linemod_preprocessed).')
parser.add_argument('--rotation-representation', help = 'Which representation of the rotation should be used. Choose from "axis_angle", "rotation_matrix" and "quaternion"', default = 'axis_angle')
parser.add_argument('--weights', help = 'File containing weights to init the model parameter')
parser.add_argument('--batch-size', help = 'Size of the batches.', default = 1, type = int)
parser.add_argument('--phi', help = 'Hyper parameter phi', default = 0, type = int, choices = (0, 1, 2, 3, 4, 5, 6))
parser.add_argument('--gpu', help = 'Id of the GPU to use (as reported by nvidia-smi).')
parser.add_argument('--score-threshold', help = 'score threshold for non max suppresion', type = float, default = 0.5)
parser.add_argument('--validation-image-save-path', help = 'path where to save the predicted validation images after each epoch', default = None)
print(vars(parser.parse_args(args)))
return parser.parse_args(args)
def main(args=None):
"""
Evaluate an EfficientPose model.
Args:
args: parseargs object containing configuration for the evaluation procedure.
"""
allow_gpu_growth_memory()
# parse arguments
if args is None:
args = sys.argv[1:]
args = parse_args(args)
if args.validation_image_save_path:
os.makedirs(args.validation_image_save_path, exist_ok = True)
# create the generators
print("\nCreating the Generators...")
generator = create_generators(args)
print("Done!")
num_rotation_parameters = generator.get_num_rotation_parameters()
num_classes = generator.num_classes()
num_anchors = generator.num_anchors
# optionally choose specific GPU
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
print("\nBuilding the Model...")
_, prediction_model, _ = build_EfficientPose(args.phi,
num_classes = num_classes,
num_anchors = num_anchors,
freeze_bn = True,
score_threshold = args.score_threshold,
num_rotation_parameters = num_rotation_parameters,
print_architecture = False)
print("Done!")
# load pretrained weights
print('Loading model, this may take a second...')
prediction_model.load_weights(args.weights, by_name = True)
print("\nDone!")
evaluate_model(prediction_model, generator, args.validation_image_save_path, args.score_threshold)
def allow_gpu_growth_memory():
"""
Set allow growth GPU memory to true
"""
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
_ = tf.Session(config = config)
def create_generators(args):
"""
Create generators for training and validation.
Args:
args: parseargs object containing configuration for generators.
Returns:
The validation generator
"""
common_args = {
'batch_size': args.batch_size,
'phi': args.phi,
}
if args.dataset_type == 'linemod':
from generators.linemod import LineModGenerator
generator = LineModGenerator(
args.linemod_path,
args.object_id,
train = False,
shuffle_dataset = False,
shuffle_groups = False,
rotation_representation = args.rotation_representation,
use_colorspace_augmentation = False,
use_6DoF_augmentation = False,
**common_args
)
elif args.dataset_type == 'occlusion':
from generators.occlusion import OcclusionGenerator
generator = OcclusionGenerator(
args.occlusion_path,
train = False,
shuffle_dataset = False,
shuffle_groups = False,
rotation_representation = args.rotation_representation,
use_colorspace_augmentation = False,
use_6DoF_augmentation = False,
**common_args
)
else:
raise ValueError('Invalid data type received: {}'.format(args.dataset_type))
return generator
def evaluate_model(model, generator, save_path, score_threshold, iou_threshold = 0.5, max_detections = 100, diameter_threshold = 0.1):
"""
Evaluates a given model using the data from the given generator.
Args:
model: The model that should be evaluated.
generator: Generator that loads the dataset to evaluate.
save_path: Where to save the evaluated images with the drawn annotations and predictions. Or None if the images should not be saved.
score_threshold: Minimum score threshold at which a prediction is not filtered out
iou_threshold: Intersection-over-Union (IoU) threshold between the GT and predicted 2D bboxes when a detection is considered to be correct.
max_detections: Maximum detections per image.
diameter_threshold: The threshold relative to the 3D model's diameter at which a 6D pose is considered correct.
If the average distance between the 3D model points transformed with the GT pose and estimated pose respectively, is lower than this threshold the pose is considered to be correct.
"""
# run evaluation
average_precisions, add_metric, add_s_metric, metric_5cm_5degree, translation_diff_metric, rotation_diff_metric, metric_2d_projection, mixed_add_and_add_s_metric, average_point_distance_error_metric, average_sym_point_distance_error_metric, mixed_average_point_distance_error_metric = evaluate(
generator,
model,
iou_threshold = iou_threshold,
score_threshold = score_threshold,
max_detections = max_detections,
save_path = save_path,
diameter_threshold = diameter_threshold
)
verbose = 1
weighted_average = False
# compute per class average precision
total_instances = []
precisions = []
for label, (average_precision, num_annotations ) in average_precisions.items():
if verbose == 1:
print('{:.0f} instances of class'.format(num_annotations),
generator.label_to_name(label), 'with average precision: {:.4f}'.format(average_precision))
total_instances.append(num_annotations)
precisions.append(average_precision)
if weighted_average:
mean_ap = sum([a * b for a, b in zip(total_instances, precisions)]) / sum(total_instances)
else:
mean_ap = sum(precisions) / sum(x > 0 for x in total_instances)
# compute per class ADD Accuracy
total_instances_add = []
add_accuracys = []
for label, (add_acc, num_annotations) in add_metric.items():
if verbose == 1:
print('{:.0f} instances of class'.format(num_annotations),
generator.label_to_name(label), 'with ADD accuracy: {:.4f}'.format(add_acc))
total_instances_add.append(num_annotations)
add_accuracys.append(add_acc)
if weighted_average:
mean_add = sum([a * b for a, b in zip(total_instances_add, add_accuracys)]) / sum(total_instances_add)
else:
mean_add = sum(add_accuracys) / sum(x > 0 for x in total_instances_add)
#same for add-s metric
total_instances_add_s = []
add_s_accuracys = []
for label, (add_s_acc, num_annotations) in add_s_metric.items():
if verbose == 1:
print('{:.0f} instances of class'.format(num_annotations),
generator.label_to_name(label), 'with ADD-S-Accuracy: {:.4f}'.format(add_s_acc))
total_instances_add_s.append(num_annotations)
add_s_accuracys.append(add_s_acc)
if weighted_average:
mean_add_s = sum([a * b for a, b in zip(total_instances_add_s, add_s_accuracys)]) / sum(total_instances_add_s)
else:
mean_add_s = sum(add_s_accuracys) / sum(x > 0 for x in total_instances_add_s)
#same for 5cm 5degree metric
total_instances_5cm_5degree = []
accuracys_5cm_5degree = []
for label, (acc_5cm_5_degree, num_annotations) in metric_5cm_5degree.items():
if verbose == 1:
print('{:.0f} instances of class'.format(num_annotations),
generator.label_to_name(label), 'with 5cm-5degree-Accuracy: {:.4f}'.format(acc_5cm_5_degree))
total_instances_5cm_5degree.append(num_annotations)
accuracys_5cm_5degree.append(acc_5cm_5_degree)
if weighted_average:
mean_5cm_5degree = sum([a * b for a, b in zip(total_instances_5cm_5degree, accuracys_5cm_5degree)]) / sum(total_instances_5cm_5degree)
else:
mean_5cm_5degree = sum(accuracys_5cm_5degree) / sum(x > 0 for x in total_instances_5cm_5degree)
#same for translation diffs
translation_diffs_mean = []
translation_diffs_std = []
for label, (t_mean, t_std) in translation_diff_metric.items():
print('class', generator.label_to_name(label), 'with Translation Differences in mm: Mean: {:.4f} and Std: {:.4f}'.format(t_mean, t_std))
translation_diffs_mean.append(t_mean)
translation_diffs_std.append(t_std)
mean_translation_mean = sum(translation_diffs_mean) / len(translation_diffs_mean)
mean_translation_std = sum(translation_diffs_std) / len(translation_diffs_std)
#same for rotation diffs
rotation_diffs_mean = []
rotation_diffs_std = []
for label, (r_mean, r_std) in rotation_diff_metric.items():
if verbose == 1:
print('class', generator.label_to_name(label), 'with Rotation Differences in degree: Mean: {:.4f} and Std: {:.4f}'.format(r_mean, r_std))
rotation_diffs_mean.append(r_mean)
rotation_diffs_std.append(r_std)
mean_rotation_mean = sum(rotation_diffs_mean) / len(rotation_diffs_mean)
mean_rotation_std = sum(rotation_diffs_std) / len(rotation_diffs_std)
#same for 2d projection metric
total_instances_2d_projection = []
accuracys_2d_projection = []
for label, (acc_2d_projection, num_annotations) in metric_2d_projection.items():
if verbose == 1:
print('{:.0f} instances of class'.format(num_annotations),
generator.label_to_name(label), 'with 2d-projection-Accuracy: {:.4f}'.format(acc_2d_projection))
total_instances_2d_projection.append(num_annotations)
accuracys_2d_projection.append(acc_2d_projection)
if weighted_average:
mean_2d_projection = sum([a * b for a, b in zip(total_instances_2d_projection, accuracys_2d_projection)]) / sum(total_instances_2d_projection)
else:
mean_2d_projection = sum(accuracys_2d_projection) / sum(x > 0 for x in total_instances_2d_projection)
#same for mixed_add_and_add_s_metric
total_instances_mixed_add_and_add_s_metric = []
accuracys_mixed_add_and_add_s_metric = []
for label, (acc_mixed_add_and_add_s_metric, num_annotations) in mixed_add_and_add_s_metric.items():
if verbose == 1:
print('{:.0f} instances of class'.format(num_annotations),
generator.label_to_name(label), 'with ADD(-S)-Accuracy: {:.4f}'.format(acc_mixed_add_and_add_s_metric))
total_instances_mixed_add_and_add_s_metric.append(num_annotations)
accuracys_mixed_add_and_add_s_metric.append(acc_mixed_add_and_add_s_metric)
if weighted_average:
mean_mixed_add_and_add_s_metric = sum([a * b for a, b in zip(total_instances_mixed_add_and_add_s_metric, accuracys_mixed_add_and_add_s_metric)]) / sum(total_instances_mixed_add_and_add_s_metric)
else:
mean_mixed_add_and_add_s_metric = sum(accuracys_mixed_add_and_add_s_metric) / sum(x > 0 for x in total_instances_mixed_add_and_add_s_metric)
#same for average transformed point distances
transformed_diffs_mean = []
transformed_diffs_std = []
for label, (t_mean, t_std) in average_point_distance_error_metric.items():
print('class', generator.label_to_name(label), 'with Transformed Point Distances in mm: Mean: {:.4f} and Std: {:.4f}'.format(t_mean, t_std))
transformed_diffs_mean.append(t_mean)
transformed_diffs_std.append(t_std)
mean_transformed_mean = sum(transformed_diffs_mean) / len(transformed_diffs_mean)
mean_transformed_std = sum(transformed_diffs_std) / len(transformed_diffs_std)
#same for average symmetric transformed point distances
transformed_sym_diffs_mean = []
transformed_sym_diffs_std = []
for label, (t_mean, t_std) in average_sym_point_distance_error_metric.items():
print('class', generator.label_to_name(label), 'with Transformed Symmetric Point Distances in mm: Mean: {:.4f} and Std: {:.4f}'.format(t_mean, t_std))
transformed_sym_diffs_mean.append(t_mean)
transformed_sym_diffs_std.append(t_std)
mean_transformed_sym_mean = sum(transformed_sym_diffs_mean) / len(transformed_sym_diffs_mean)
mean_transformed_sym_std = sum(transformed_sym_diffs_std) / len(transformed_sym_diffs_std)
#same for mixed average transformed point distances for symmetric and asymmetric objects
mixed_transformed_diffs_mean = []
mixed_transformed_diffs_std = []
for label, (t_mean, t_std) in mixed_average_point_distance_error_metric.items():
print('class', generator.label_to_name(label), 'with Mixed Transformed Point Distances in mm: Mean: {:.4f} and Std: {:.4f}'.format(t_mean, t_std))
mixed_transformed_diffs_mean.append(t_mean)
mixed_transformed_diffs_std.append(t_std)
mean_mixed_transformed_mean = sum(mixed_transformed_diffs_mean) / len(mixed_transformed_diffs_mean)
mean_mixed_transformed_std = sum(mixed_transformed_diffs_std) / len(mixed_transformed_diffs_std)
print('mAP: {:.4f}'.format(mean_ap))
print('ADD: {:.4f}'.format(mean_add))
print('ADD-S: {:.4f}'.format(mean_add_s))
print('5cm_5degree: {:.4f}'.format(mean_5cm_5degree))
print('TranslationErrorMean_in_mm: {:.4f}'.format(mean_translation_mean))
print('TranslationErrorStd_in_mm: {:.4f}'.format(mean_translation_std))
print('RotationErrorMean_in_degree: {:.4f}'.format(mean_rotation_mean))
print('RotationErrorStd_in_degree: {:.4f}'.format(mean_rotation_std))
print('2D-Projection: {:.4f}'.format(mean_2d_projection))
print('Summed_Translation_Rotation_Error: {:.4f}'.format(mean_translation_mean + mean_translation_std + mean_rotation_mean + mean_rotation_std))
print('ADD(-S): {:.4f}'.format(mean_mixed_add_and_add_s_metric))
print('AveragePointDistanceMean_in_mm: {:.4f}'.format(mean_transformed_mean))
print('AveragePointDistanceStd_in_mm: {:.4f}'.format(mean_transformed_std))
print('AverageSymmetricPointDistanceMean_in_mm: {:.4f}'.format(mean_transformed_sym_mean))
print('AverageSymmetricPointDistanceStd_in_mm: {:.4f}'.format(mean_transformed_sym_std))
print('MixedAveragePointDistanceMean_in_mm: {:.4f}'.format(mean_mixed_transformed_mean))
print('MixedAveragePointDistanceStd_in_mm: {:.4f}'.format(mean_mixed_transformed_std))
if __name__ == '__main__':
main()