这是一个面向新手的遥感图像语义分割项目。我们使用了在4亿张图像上预训练的 unicom模型,该模型在遥感分割任务中表现出色。令人惊讶的是,仅使用4张遥感图像进行训练即可获得优异效果。
This is a beginner-friendly semantic segmentation project for remote sensing images. We employ the unicom model pre-trained on 400 million images, which demonstrates outstanding performance on remote sensing segmentation tasks. Remarkably, it achieves excellent results with just 4 training images.
预测效果 | Predictions | |
![]() |
![]() |
测试样例 | Test Samples | |
![]() |
![]() |
python train_one_gpu.py # 200行极简实现 | Minimal 200-line implementation
torchrun --nproc_per_node 8 train_multi_gpus.py # 高性能多卡支持 | High-performance multi-GPU
git clone https://github.com/anxiangsir/urban_seg.git
cd urban_seg
pip install -r requirements.txt
dataset
├── origin # 5张带标注的原始图像 | 5 annotated originals
├── test # 3张无标注测试图像(本项目未使用)| 3 unlabeled test images (unused)
└── train # 通过预处理生成的训练数据 | Generated by preprocess.py
├── images # 训练图像 | Training images
└── labels # 对应标签 | Corresponding labels
python preprocess.py # 随机采样生成训练集 | Generate training set via random sampling
请从这里下载:
https://github.com/deepglint/unicom/releases
FP16-ViT-B-32.pt
FP16-ViT-B-16.pt
FP16-ViT-L-14.pt
FP16-ViT-L-14-336px.pt
CCF卫星影像的AI分类与识别提供的数据集初赛复赛训练集,一共五张卫星遥感影像 百度云盘,密码:3ih2
@inproceedings{anxiang_2023_unicom,
title={Unicom: Universal and Compact Representation Learning for Image Retrieval},
author={An, Xiang and Deng, Jiankang and Yang, Kaicheng and Li, Jiawei and Feng, Ziyong and Guo, Jia and Yang, Jing and Liu, Tongliang},
booktitle={ICLR},
year={2023}
}
QQ群: 679897018 | QQ Group: 679897018 欢迎提交Issue或加群讨论! | Welcome to submit issues or join our group!