Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

In-Place Dense Matrix Transposition #2199

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
260 changes: 247 additions & 13 deletions src/main/java/org/apache/sysds/runtime/matrix/data/LibMatrixReorg.java
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,9 @@ public class LibMatrixReorg {

//use csr instead of mcsr sparse block for rexpand columns / diag v2m
public static final boolean SPARSE_OUTPUTS_IN_CSR = true;

//use legacy in-place transpose dense instead of brenner in-place transpose dense
public static final boolean TRANSPOSE_IN_PLACE_DENSE_LEGACY = true;

private enum ReorgType {
TRANSPOSE,
Expand Down Expand Up @@ -1789,19 +1792,23 @@ else if(cols == rows){
transposeInPlaceTrivial(in.getDenseBlockValues(), cols, k);
}
else {
if(cols<rows){
// important to set dims after
c2r(in, k);
values.setDims(new int[]{rows,cols});
in.setNumColumns(cols);
in.setNumRows(rows);
}
else{
// important to set dims before
values.setDims(new int[]{rows,cols});
in.setNumColumns(cols);
in.setNumRows(rows);
r2c(in, k);
if(TRANSPOSE_IN_PLACE_DENSE_LEGACY) {
if(cols < rows) {
// important to set dims after
c2r(in, k);
values.setDims(new int[] {rows, cols});
in.setNumColumns(cols);
in.setNumRows(rows);
}
else {
// important to set dims before
values.setDims(new int[] {rows, cols});
in.setNumColumns(cols);
in.setNumRows(rows);
r2c(in, k);
}
} else {
transposeInPlaceDenseBrenner(in, k);
}
}

Expand Down Expand Up @@ -4227,4 +4234,231 @@ public Object call() {
return null;
}
}

/**
* Transposes a dense matrix in-place using following cycles based on Brenner's method. This
* method shifts cycles with a focus on less storage by using cycle leaders based on prime factorization. The used
* storage is in O(n+m). Quadratic matrices should be handled outside this method (using the trivial method) for a
* speedup. This method is based on: Algorithm 467, Brenner, https://dl.acm.org/doi/pdf/10.1145/355611.362542.
*
* @param in The input matrix to be transposed.
* @param k The number of threads.
*/
public static void transposeInPlaceDenseBrenner(MatrixBlock in, int k) {

DenseBlock denseBlock = in.getDenseBlock();
double[] matrix = in.getDenseBlockValues();

final int rows = in.getNumRows();
final int cols = in.getNumColumns();

// Brenner: rows + cols / 2 is sufficient for most cases.
int workSize = rows + cols;
int maxIndex = rows * cols - 1;

// prime factorization of the maximum index to identify cycle structures
// Brenner: length 8 is sufficient up to maxIndex 2*3*5*...*19 = 9,767,520.
int[] primes = new int[8];
int[] exponents = new int[8];
int[] powers = new int[8];
int numPrimes = primeFactorization(maxIndex, primes, exponents, powers);

int[] iExponents = new int[numPrimes];
int div = 1;

div:
while(div < maxIndex / 2) {

// number of indices divisible by div and no other divisor of maxIndex
int count = eulerTotient(primes, exponents, iExponents, numPrimes, maxIndex / div);
// all false
boolean[] moved = new boolean[workSize];
// starting point cycle
int start = div;

count:
do {
// companion of start
int comp = maxIndex - start;

if(start == div) {
// shift cycles
count = simultaneousCycleShift(matrix, moved, rows, maxIndex, count, workSize, start, comp);
start += div;
}
else if(start < workSize && moved[start]) {
// already moved
start += div;
}
else {
// handle other cycle starts
int cycleLeader = start / div;
for(int ip = 0; ip < numPrimes; ip++) {
if(iExponents[ip] != exponents[ip] && cycleLeader % primes[ip] == 0) {
start += div;
continue count;
}
}

if(start < workSize) {
count = simultaneousCycleShift(matrix, moved, rows, maxIndex, count, workSize, start, comp);
start += div;
continue;
}

int test = start;
do {
test = prevIndexCycle(test, rows, cols);
if(test < start || test > comp) {
start += div;
continue count;
}
}
while(test > start && test < comp);

count = simultaneousCycleShift(matrix, moved, rows, maxIndex, count, workSize, start, comp);
start += div;
}
}
while(count > 0);

// update cycle divisor for the next set of cycles based on prime factors
for(int ip = 0; ip < numPrimes; ip++) {
if(iExponents[ip] != exponents[ip]) {
iExponents[ip]++;
div *= primes[ip];
continue div;
}
iExponents[ip] = 0;
div /= powers[ip];
}
break;
}

denseBlock.setDims(new int[] {cols, rows});
in.setNumColumns(rows);
in.setNumRows(cols);
}

/**
* Performs a simultaneous cycle shift for a cycle and its companion cycle. This method ensures that distinct cycles
* or self-dual cycles are handled correctly. This method is based on: Algorithm 2, Karlsson,
* https://webapps.cs.umu.se/uminf/reports/2009/011/part1.pdf and Algorithm 467, Brenner,
* https://dl.acm.org/doi/pdf/10.1145/355611.362542.
*
* @param matrix The matrix whose elements are being shifted.
* @param moved Boolean array tracking whether an element has already been moved.
* @param rows The number of rows in the matrix.
* @param maxIndex The maximum valid index in the matrix.
* @param count The number of elements left to process.
* @param workSize The length of moved.
* @param start The starting index for the cycle shift.
* @param comp The corresponding companion index.
* @return The updated count of elements remaining to shift.
*/
private static int simultaneousCycleShift(double[] matrix, boolean[] moved, int rows, int maxIndex, int count,
int workSize, int start, int comp) {

int orig = start;
double val = matrix[orig];
double cval = matrix[comp];

int prevOrig = prevIndexCycle(orig, rows, (maxIndex + 1) / rows);
int prevComp = maxIndex - prevOrig;

while(true) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

you can probably help the compiler and improve performance a bit, by moving the content of this loop to another function.

furthermore, is this loop possible to do in parallel?

if(orig < workSize)
moved[orig] = true;
if(comp < workSize)
moved[comp] = true;
// decrease the remaining shift count by orig and comp
count -= 2;

if(prevOrig == start) {
// cycle and comp are distinct
matrix[orig] = val;
matrix[comp] = cval;
break;
}
if(prevComp == start) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

else if?

// cycle is self dual
matrix[orig] = cval;
matrix[comp] = val;
break;
}

// shift the values to their next positions
matrix[orig] = matrix[prevOrig];
matrix[comp] = matrix[prevComp];
// update
orig = prevOrig;
comp = prevComp;
prevOrig = prevIndexCycle(orig, rows, (maxIndex + 1) / rows);
prevComp = maxIndex - prevOrig;
}
return count;
}

private static int prevIndexCycle(int index, int rows, int cols) {
int lastIndex = rows * cols - 1;
if(index == lastIndex)
return lastIndex;
long temp = (long) index * cols;
return (int) (temp % lastIndex);
}

/**
* Performs prime factorization of a given number n. The method calculates the prime factors of n, their exponents,
* powers and stores the results in the provided arrays.
*
* @param n The number to be factorized.
* @param primes Array to store the unique prime factors of n.
* @param exponents Array to store the exponents of the respective prime factors.
* @param powers Array to store the powers of the respective prime factors.
* @return The number of unique prime factors.
*/
private static int primeFactorization(int n, int[] primes, int[] exponents, int[] powers) {
int pIdx = -1;
int currDiv = 0;
int rest = n;
int div = 2;

while(rest > 1) {
int quotient = rest / div;
if(rest - div * quotient == 0) {
if(div == currDiv) {
// current divisor is the same as the last one
powers[pIdx] *= div;
exponents[pIdx]++;
}
else {
// new prime factor found
pIdx++;
if(pIdx >= primes.length)
throw new RuntimeException("Not enough space, need to expand input arrays.");

primes[pIdx] = div;
powers[pIdx] = div;
currDiv = div;
exponents[pIdx] = 1;
}
rest = quotient;
}
else {
// only odd divs
div = (div == 2) ? 3 : div + 2;
}
}
return pIdx + 1;
}

private static int eulerTotient(int[] primes, int[] exponents, int[] iExponents, int numPrimes, int count) {
for(int ip = 0; ip < numPrimes; ip++) {
if(iExponents[ip] == exponents[ip]) {
continue;
}
count = (count / primes[ip]) * (primes[ip] - 1);
}
return count;
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.apache.sysds.test.component.matrix.libMatrixReorg;

import org.apache.sysds.runtime.matrix.data.LibMatrixReorg;
import org.apache.sysds.runtime.matrix.data.MatrixBlock;
import org.apache.sysds.test.TestUtils;
import org.junit.Test;

public class TransposeInPlaceBrennerTest {

@Test
public void transposeInPlaceDenseBrennerOnePrime() {
// 3*4-1 = 11
testTransposeInPlaceDense(3, 4, 1);
}

@Test
public void transposeInPlaceDenseBrennerTwoPrimes() {
// 4*9-1 = 5*7
testTransposeInPlaceDense(4, 9, 0.96);
}

@Test
public void transposeInPlaceDenseBrennerThreePrimes() {
// 2*53-1 = 3*5*7
testTransposeInPlaceDense(2, 53, 0.52);
}

@Test
public void transposeInPlaceDenseBrennerThreePrimesOneExpo() {
// 1151*2999-1 = (2**3)*3*143827
testTransposeInPlaceDense(1151, 2999, 0.82);
}

@Test
public void transposeInPlaceDenseBrennerThreePrimesAllExpos() {
// 9*10889-1 = (2**4)*(5**3)*(7**2)
testTransposeInPlaceDense(9, 10889, 0.74);
}

@Test
public void transposeInPlaceDenseBrennerFourPrimesOneExpo() {
// 53*4421-1 = (2**3)*3*13*751
testTransposeInPlaceDense(53, 4421, 0.75);
}

@Test
public void transposeInPlaceDenseBrennerFivePrimes() {
// 3*3337-1 = 2*5*7*11*13
testTransposeInPlaceDense(3, 3337, 0.68);
}

@Test
public void transposeInPlaceDenseBrennerSixPrimesOneExpo() {
// 53*7177-1 = (2**2)*5*7*11*13*19
testTransposeInPlaceDense(53, 7177, 0.78);
}

@Test
public void transposeInPlaceDenseBrennerSevenPrimesThreeExpos() {
// 2087*17123-1 = (2**2)*3*(5**2)*(7**2)*11*13*17
testTransposeInPlaceDense(2087, 17123, 0.79);
}

@Test
public void transposeInPlaceDenseBrennerEightPrimes() {
// 347*27953-1 = 2*3*5*7*11*13*17*19
testTransposeInPlaceDense(347, 27953, 0.86);
}

private void testTransposeInPlaceDense(int rows, int cols, double sparsity) {
MatrixBlock X = MatrixBlock.randOperations(rows, cols, sparsity);
MatrixBlock tX = LibMatrixReorg.transpose(X);

LibMatrixReorg.transposeInPlaceDenseBrenner(X, 1);

TestUtils.compareMatrices(X, tX, 1e-8);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

set epsilon to 0.

}

}
Loading