-
Notifications
You must be signed in to change notification settings - Fork 213
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add q-dq layout for ET * up * up * up * up * up * up * up
- Loading branch information
Showing
4 changed files
with
249 additions
and
155 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import logging | ||
|
||
import torch | ||
|
||
from torchao.dtypes.affine_quantized_tensor import ( | ||
AffineQuantizedTensor, | ||
register_layout, | ||
) | ||
from torchao.dtypes.affine_quantized_tensor_ops import ( | ||
register_aqt_quantized_linear_dispatch, | ||
) | ||
|
||
logger = logging.getLogger(__name__) | ||
logger.setLevel(logging.WARNING) | ||
|
||
import sys | ||
|
||
handler = logging.StreamHandler(sys.stdout) | ||
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") | ||
handler.setFormatter(formatter) | ||
logger.addHandler(handler) | ||
|
||
|
||
from torchao.dtypes.utils import PlainLayout | ||
|
||
|
||
class QDQLayout(PlainLayout): | ||
pass | ||
|
||
|
||
from torchao.dtypes.uintx.plain_layout import PlainAQTTensorImpl | ||
|
||
|
||
@register_layout(QDQLayout) | ||
class _Impl(PlainAQTTensorImpl): | ||
pass | ||
|
||
|
||
def _linear_check(input_tensor, weight_tensor, bias): | ||
layout = weight_tensor.tensor_impl.get_layout() | ||
return isinstance(layout, QDQLayout) | ||
|
||
|
||
def _linear_impl(input_tensor, weight_tensor, bias): | ||
if isinstance(input_tensor, AffineQuantizedTensor): | ||
input_tensor = input_tensor.dequantize() | ||
if isinstance(weight_tensor, AffineQuantizedTensor): | ||
weight_tensor = weight_tensor.dequantize() | ||
return torch.nn.functional.linear(input_tensor, weight_tensor, bias) | ||
|
||
|
||
register_aqt_quantized_linear_dispatch( | ||
_linear_check, | ||
_linear_impl, | ||
) |
186 changes: 186 additions & 0 deletions
186
torchao/experimental/tests/test_int8_dynamic_activation_intx_weight.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import copy | ||
import itertools | ||
import tempfile | ||
import unittest | ||
|
||
import torch | ||
from torch.testing import FileCheck | ||
|
||
from torchao.dtypes import PlainLayout | ||
from torchao.experimental.packed_linear_int8_dynamic_activation_intx_weight_layout import ( | ||
PackedLinearInt8DynamicActivationIntxWeightLayout, | ||
) | ||
from torchao.experimental.q_dq_layout import QDQLayout | ||
from torchao.experimental.quant_api import ( | ||
int8_dynamic_activation_intx_weight, | ||
) | ||
from torchao.quantization.granularity import ( | ||
PerGroup, | ||
PerRow, | ||
) | ||
from torchao.quantization.quant_api import quantize_ | ||
from torchao.utils import unwrap_tensor_subclass | ||
|
||
|
||
class TestInt8DynamicActivationIntxWeight(unittest.TestCase): | ||
def test_accuracy(self): | ||
""" | ||
Checks the accuracy of different layouts by comparing the results to PlainLayout() | ||
""" | ||
m = 1 | ||
n = 1071 | ||
k = 4096 | ||
activations = torch.randn(m, k) | ||
model = torch.nn.Sequential(*[torch.nn.Linear(k, n, bias=False)]) | ||
|
||
reference_layout = PlainLayout() | ||
test_layouts = [ | ||
PackedLinearInt8DynamicActivationIntxWeightLayout(), | ||
QDQLayout(), | ||
] | ||
test_weight_dtypes = [ | ||
torch.int1, | ||
torch.int2, | ||
torch.int3, | ||
torch.int4, | ||
torch.int5, | ||
torch.int6, | ||
torch.int7, | ||
torch.int8, | ||
] | ||
test_has_weight_zeros = [True, False] | ||
test_granularities = [PerGroup(128), PerRow()] | ||
for layout, weight_dtype, has_weight_zeros, granularity in itertools.product( | ||
test_layouts, test_weight_dtypes, test_has_weight_zeros, test_granularities | ||
): | ||
quantized_model = copy.deepcopy(model) | ||
quantize_( | ||
quantized_model, | ||
int8_dynamic_activation_intx_weight( | ||
weight_dtype=weight_dtype, | ||
granularity=granularity, | ||
has_weight_zeros=has_weight_zeros, | ||
layout=layout, | ||
), | ||
) | ||
|
||
quantized_model_reference = copy.deepcopy(model) | ||
quantize_( | ||
quantized_model_reference, | ||
int8_dynamic_activation_intx_weight( | ||
weight_dtype=weight_dtype, | ||
granularity=granularity, | ||
has_weight_zeros=has_weight_zeros, | ||
layout=reference_layout, | ||
), | ||
) | ||
|
||
with torch.no_grad(): | ||
result = quantized_model(activations) | ||
expected_result = quantized_model_reference(activations) | ||
self.assertTrue(torch.allclose(result, expected_result, atol=1e-6)) | ||
|
||
def test_export_compile_aoti_PackedLinearInt8DynamicActivationIntxWeightLayout( | ||
self, | ||
): | ||
""" | ||
Checks that models quantized with PackedLinearInt8DynamicActivationIntxWeightLayout() work with | ||
torch.export.export, torch.compile, and AOTI. | ||
""" | ||
granularity = PerRow() | ||
m = 3 | ||
k0 = 512 | ||
k1 = 256 | ||
k2 = 128 | ||
k3 = 1024 | ||
weight_dtype = torch.int4 | ||
has_weight_zeros = True | ||
layers = [ | ||
torch.nn.Linear(k0, k1, bias=False), | ||
torch.nn.Linear(k1, k2, bias=False), | ||
torch.nn.Linear(k2, k3, bias=False), | ||
] | ||
model = torch.nn.Sequential(*layers) | ||
activations = torch.randn(2, 1, m, k0, dtype=torch.float32) | ||
|
||
quantize_( | ||
model, | ||
int8_dynamic_activation_intx_weight( | ||
weight_dtype=weight_dtype, | ||
granularity=granularity, | ||
has_weight_zeros=has_weight_zeros, | ||
layout=PackedLinearInt8DynamicActivationIntxWeightLayout(), | ||
), | ||
) | ||
eager_results = model(activations) | ||
|
||
unwrapped_model = copy.deepcopy(model) | ||
unwrap_tensor_subclass(model) | ||
|
||
# Export | ||
exported = torch.export.export(model, (activations,), strict=True) | ||
exported_results = exported.module()(activations) | ||
self.assertTrue(torch.allclose(eager_results, exported_results)) | ||
|
||
# Compile | ||
compiled = torch.compile(unwrapped_model) | ||
with torch.no_grad(): | ||
compiled_results = compiled(activations) | ||
self.assertTrue(torch.allclose(eager_results, compiled_results)) | ||
|
||
# AOTI | ||
with tempfile.TemporaryDirectory() as tmpdirname: | ||
package_path = f"{tmpdirname}/model.pt2" | ||
torch._inductor.aoti_compile_and_package( | ||
exported, package_path=package_path | ||
) | ||
fn = torch._inductor.aoti_load_package(package_path) | ||
aoti_results = fn(activations) | ||
self.assertTrue(torch.allclose(eager_results, aoti_results)) | ||
|
||
def test_export_QDQLayout(self): | ||
""" | ||
Checks that models quantized with TestQDQLayout() export as expected | ||
""" | ||
granularity = PerGroup(64) | ||
weight_dtype = torch.int4 | ||
has_weight_zeros = False | ||
layers = [ | ||
torch.nn.Linear(512, 256, bias=False), | ||
] | ||
model = torch.nn.Sequential(*layers) | ||
activations = torch.randn(1, 512, dtype=torch.float32) | ||
|
||
quantize_( | ||
model, | ||
int8_dynamic_activation_intx_weight( | ||
weight_dtype=weight_dtype, | ||
granularity=granularity, | ||
has_weight_zeros=has_weight_zeros, | ||
layout=QDQLayout(), | ||
), | ||
) | ||
eager_results = model(activations) | ||
|
||
unwrap_tensor_subclass(model) | ||
exported = torch.export.export(model, (activations,), strict=True) | ||
exported_results = exported.module()(activations) | ||
self.assertTrue(torch.allclose(eager_results, exported_results)) | ||
|
||
expected_lines = [ | ||
"torch.ops.quant.choose_qparams_affine.default(input_1, 'ASYMMETRIC', [1, 512], torch.int32, -128, 127, None, torch.float32, torch.int32)", | ||
"torch.ops.quant.quantize_affine.default(input_1, [1, 512], getitem, getitem_1, torch.int32, -128, 127)", | ||
"torch.ops.quant.dequantize_affine.default(quantize_affine, [1, 512], getitem, getitem_1, torch.int32, -128, 127)", | ||
"torch.ops.quant.dequantize_affine.default(p_fn_0_parametrizations_weight_original0, [1, 64], p_fn_0_parametrizations_weight_original1, None, torch.int32, -8, 7, 'NONE')", | ||
"torch.ops.aten.linear.default(dequantize_affine, dequantize_affine_1)", | ||
] | ||
for line in expected_lines: | ||
FileCheck().check_count(line, 1, exactly=True).run( | ||
exported.graph_module.code | ||
) |
Oops, something went wrong.