Skip to content

I have evaluated the prediction performance of different ML methods: Multinomial Logistic Regression, Decision Trees and Random Forests, Support Vector Machine, Linear Discriminant Analysis, and Deep Neural Networks on classifying the digits of the MNIST dataset with tuning and validation.

Notifications You must be signed in to change notification settings

rafsanRubaiyat/Prediction-performance-of-ML-methods-on-MNIST-data

Repository files navigation

Please read the ML_classification_methods_performance_report.pdf for the algorithms, cross validation scores and more details.

The MNIST dataset is a benchmark in the field of statistics, machine learning and computer vision, consisting of 70,000 grayscale images of handwritten digits, each of size 28x28 pixels, with each image labeled from 0 to 9. For our exercises, we have 10,000 images’ data as the training dataset, and 5,000 images’ data as the testing dataset out of the original 70,000 images.

The task is to develop a model to accurately classify the handwritten digits. The motivation behind this project is to explore and evaluate the accuracy of different statistical models in addressing the MNIST classification problem. Building on the results of a naive probabilistic model, which achieved a misclassification rate of about 22%, this project aims to push the boundaries of accuracy by employing more sophisticated models and techniques. The specific goals I’ve set for the project are:

1. Compare the prediction performance of various models:

(a) Multinomial Logistic Regression (with Lasso, Ridge, and Elastic Net)
(b) Decision Trees and Random Forests
(c) Multi-class Support Vector Machine (SVM)
(d) Multi-class Linear Discriminant Analysis (LDA)
(e) Deep Neural Network (DNN and CNN)

2. Describe the working procedures of the algorithms, and rationale for choosing them.

3. Optimize and tune each model to achieve the best possible classification accuracy.

4. Provide a comprehensive analysis and compare their performances.

Results:

Method Accuracy Misclassification Rate
Multinomial Logistic Regression 0.899 11%
Decision Trees 0.8047 20%
Random Forests 0.925 7.5%
Support Vector Machine 0.937 6.3%
Linear Discriminant Analysis 0.845 15.5%
Deep Neural Network 0.9287 7.1%
Convolutional Neural Network 0.9784 2.2%

Result Analysis and remarks

Not surprisingly, the Convolutional Neural Network (CNN) outperforms all other models with a misclassification rate of only 2.2%. This superior performance can be attributed to CNN’s ability to capture spatial hierarchies and local dependencies in the image data, making it highly effective for image classification tasks like MNIST. The Deep Neural Network (DNN) also shows strong performance with a misclassification rate of 7.1%. The Support Vector Machine (SVM) achieves an accuracy of 0.937 and a misclassification rate of 6.3%. SVMs are powerful classifiers that perform well on high-dimensional data, but they lack the spatial feature extraction capabilities of CNNs. Random Forests achieve a misclassification rate of 7.5%. As an ensemble method, Random Forests combine the predictions of multiple decision trees, leading to better generalization than individual Decision Trees, which have a misclassification rate of 20%. Multinomial Logistic Regression and Linear Discriminant Analysis (LDA) achieve misclassification rates of 11% and 15.5%, respectively. While these linear models are simpler and faster to train, they are less capable of capturing the complex patterns in image data compared to non-linear models like CNNs and SVMs.

Rationale for Model Selection

Given the results:
• Use CNNs for the best performance in image classification tasks like MNIST due to their ability to capture spatial hierarchies and local dependencies.
• Consider DNNs if computational resources are limited, as they still provide strong performance without the same level of complexity as CNNs.
• Use SVMs and Random Forests if a balance between accuracy and interpretability is needed, and when computational efficiency is a priority.
• Use Decision Trees, Logistic Regression or LDA only for simpler, less complex classification tasks or when quick, interpretable models are required.

Overall, CNNs are recommended for the highest accuracy in MNIST classification, but the choice of model should also consider the specific requirements and constraints of the task at hand.

About

I have evaluated the prediction performance of different ML methods: Multinomial Logistic Regression, Decision Trees and Random Forests, Support Vector Machine, Linear Discriminant Analysis, and Deep Neural Networks on classifying the digits of the MNIST dataset with tuning and validation.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages