-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
124 lines (93 loc) · 3.92 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""ETL Pipeline"""
import configparser
import glob
import os
from functools import partial
import pandas as pd
import psycopg2
from sql_queries import *
def process_song_file(cur, filepath):
"""
Process data from song json file and transfer it into the songs and artists table
"""
# open song file
df = pd.read_json(filepath, lines=True)
# insert song record
song_data = list(df[["song_id", "title", "artist_id", "year", "duration"]].values[0])
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = list(df[["artist_id", "artist_name", "artist_location",
"artist_latitude", "artist_longitude"]].values[0])
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""
Process data from log files and transfer data into time, user and songplays table
"""
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df.page == "NextSong"]
# convert timestamp column to datetime
t = df["ts"].apply(partial(pd.Timestamp, unit="ms"))
# insert time data records
time_data = (t, t.dt.hour, t.dt.day, t.dt.week, t.dt.month, t.dt.year, t.dt.weekday)
column_labels = ("start_time", "hour", "day", "week", "month", "year", "weekda")
time_df = pd.DataFrame.from_dict(dict(zip(column_labels, time_data)))
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df[["userId", "firstName", "lastName", "gender", "level"]]
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = (pd.Timestamp(row["ts"], unit="ms"), row["userId"],
row["level"], songid, artistid, row["sessionId"],
row["location"], row["userAgent"])
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""
Read all the files from song ang log directory
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root, '*.json'))
for f in files:
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
"""
- Connect to the Sparkify Database
- Process all the song files and insert it into corresponding tables
- Process all the log files and insert data into the corresponding tabless
"""
config = configparser.ConfigParser()
config.read('psql.cfg')
db_config = config["DATABASE"]
conn = psycopg2.connect("host={} dbname={} user={} password={}".format(db_config["HOST"],
db_config["OUTPUT_DB_NAME"],
db_config["DB_USER"],
db_config["DB_PASSWORD"]))
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()